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There are essentially two approaches to type theory for λ-calculus, introduced
by Curry [9] and Church [7], respectively; Barendregt [5] dubbed them à la Curry
and à la Church. The characteristic of type systems à la Church is that if a term
is well-typed, then the type derivation that justifies the typing can be read out
of the term itself; in particular, types decorate the binding of variables, like in
λx : T.x, where we also deduce that the type of the term is T → T , which
is also its unique (simple) type. In the case of type assignment systems à la
Curry, types are assigned to untyped terms, and a term either has no type, or it
has infinitely many types, all instances of the same type scheme, e.g. λx.x has
T → T , for all the (infinitely many) choices of T . Still, typable terms encode
the structure of the typing derivation (if any), and because of this, typability of
terms is decidable.

The intersection type system in [8] is an extension of Curry’s one where there
is the new type constructor ∩ and the universal type ω plus the rules 4

Γ `∩ P : µ Γ `∩ P : ν
[∩I]

Γ `∩ P : µ ∩ ν
[ω]

`∩ P : ω

which destroys the correspondence of the subject P in the conclusion with the
structure of the typing derivation. Aiming at restoring such correspondence, as
e.g. in [12], one may manage to extend the term syntax to keep track especially
of the usages of Rule [∩I] in a typing derivation of the term, while requiring
that the subjects in the premises of the rule are (essentially) the same. Indeed,
if we understand that the subject of a typing statement encodes a derivation,
then this rule is proof-functional, having a conclusion depending not only on the
premises but also on their derivations, as already noticed in [13] and further
investigated in [1,3].

The TIC calculus and type system. In [2], of which this short note is an
abstract, we follow a different approach by encoding the information on type
derivations in the types of terms, and in particular, the types decorating the
occurrences of free and bound variables in a new calculus à la Church, which
we dub Typed Intersection λ-calculus, shortly TIC. We distinguish among three
possible usages of the intersection, corresponding to three distinct type construc-
tors. The first one is when in the typing derivation all occurrences of the same
variable have the same type and there is no use of Rule [∩I], e.g. in

4 Γ is a typing environment associating term variables to types: Γ ::= ∅ | Γ, x : µ.



`∩ λx.λy.xy : (φ ∩ ψ → φ)→ φ ∩ ψ → φ

To this term it corresponds the TIC term
λx : φ ∧ ψ → φ.λy : φ ∧ ψ.xφ∧ψ→φyφ∧ψ

which has type (φ ∧ ψ → φ) → φ ∧ ψ → φ in TIC, where ∩ has been replaced
by ∧.

The second one is when the same occurrence of a variable in the subject has
different types in the sub-derivations that have been merged by Rule [∩I], e.g.
`∩ λx.λy.xy : (φ→ φ)→ φ→ φ `∩ λx.λy.xy : ((ψ → ψ)→ ψ → ψ

[∩I]
`∩ λx.λy.xy : (φ→ φ)→ φ→ φ) ∩ ((ψ → ψ)→ ψ → ψ)

which is represented by the TIC term
λx : (φ→ φ) u (ψ → ψ).λy : φ u ψ.x(φ→φ)∧(ψ→ψ)yφ∧ψ

which has type ((φ → φ) → φ → φ) ∧ ((ψ → ψ) → ψ → ψ). Notice that in
the decoration of the variables in λx and λy the distinct types of these variables
in the derivation are connected by u, while they have the intersections of these
types in the body using ∧.

The third case, which is characteristic of intersection-type systems, is when
distinct occurrences of the same variable have different types in the derivation,
like in

x : (φ→ ψ) ∩ φ `∩ x : φ→ ψ x : (φ→ ψ) ∩ φ `∩ x : φ
[→ E]

x : (φ→ ψ) ∩ φ `∩ xx : ψ
[→ I]

`∩ λx.xx : (φ→ ψ) ∩ φ → ψ

corresponding to the TIC term
λx : (φ→ ψ) &φ.xφ→ψxφ

of type (φ→ ψ) &φ → ψ where the third (and last) variant of the intersection
type constructor is & .

Pseudo-terms of TIC are defined by the grammar
M ::= xσ | λx : κ.M |MM | Ω

where the types σ and κ belong to “main types” and “conjunctive types” kinds
below:
(base types) α ::= ϕ | θ → α (main types) σ, τ ::= α | σ ∧ σ
(relevant left types) ϑ ::= σ | ϑ&ϑ (left types) θ ::= ω | ϑ

(conjunctive types) κ ::= θ | κ u κ

A TIC term is a pseudo-term that is the subject of a typing judgment deriv-
able in the system in Figure 1. The rules in the TIC type-system make use of
some auxiliary notions which we briefly explain (see [2] for detailed definitions).
In Rule [→ I] the mapping ι(M,x) collects from left to right all the types of the
free occurrences of x in M holding the & conjunction of such types, where & is
neither idempotent nor commutative, but just associative. We define ι(M,x) = ω



[Var]
` xα : α

[ω]
` Ω : ω

`M : α ι(M,x) = θ
[→ I]

` λx : θ.M : θ → α

`M : ω → α
[→ Eω]

`MΩ : α

`M : ϑ→ α ` N : σ ϑn σ
[→ E]

`MN : α

`M : σ ` N : τ
[∧I]

`M
∧
N : σ ∧ τ

Fig. 1: TIC typing rules.

` xβ : β ` xα : α

` xβxα : ω → α ` Ω : ω

` xβxαΩ : α

`M : β&α→ α

` yα : α

` λz : ω.yα : ω → α

` N1 : β

` yφ : φ

` λz : ω.yφ : ω → φ

` N2 : α

` N : β ∧ α

`MN : α
where

α = φ→ ω → φ β = α→ ω → α

N1 = λy : α.λz : ω.yα N2 = λy : φ.λz : ω.yφ

M = λx : β&α.xβxαΩ N = λy : α u φ.λz : ω u ω.yα∧φ

Fig. 2: Example of typing.

if x does not occur in M . The relation ϑnσ holds roughly when σ can be obtained
from ϑ by replacing top level & with ∧.

Finally, and more importantly, the pre-term M
∧
N is well defined if the

erasures of M and N coincide (up to renaming of bound variables). The more
interesting clauses defining

∧
are:

xσ
∧
xτ = xσ∧τ (λx : κ.M)

∧
(λx : κ′.N) = λx : κ u κ′.M

∧
N

that is the meta-operator
∧

has the effect of introducing the ∧-conjunction
of possibly distinct types in the decoration of variable occurrences, while the
types decorating variables in λ-bindings are the u-conjunction of their (possibly
distinct) types in the respective terms. An example of TIC derivation is in Figure
2.

Reduction and main results. As a matter of fact, the meta-operator
∧

is some
sort of partial pairing, such that we can define its projections (see [2, Lemma
2(2)]): If `M : τ and τ w τ1 ∧ . . . ∧ τn with n ≥ 2,

then there is Π̃τ
i such that ` Π̃τ

i (M) : τi for each i (1 ≤ i ≤ n)
where w is the equivalence relation induced by considering ∧ associative.
With this we can define reduction as the compatible closure of the rules:

[β&] (λx : & i∈Iσi.M)N −→M [xσi := Ni]i∈I
where σ = type(N) w ∧i∈Iσi and Ni = Π̃σ

i (N) for each i ∈ I

[βω] (λx : ω.M)Ω −→M

[βu]
(λx : κj .Mj)Nj −→M ′

j j = 1, 2

(λx : κ1 u κ2.M1

∧
M2)(N1

∧
N2) −→M ′

1

∧
M ′

2



For example, by taking the TIC term of Figure 2,
(λx : (α→ ω → α) &α).xα→ω→αxαΩ)(λy : α u φ.λz : ω u ω.yα∧φ)

−→β& (λy : α.λz : ω.yα)(λy : φ.λz : ω.yφ)Ω
−→β& (λz : ω.λy : φ.λz : ω.yφ)Ω
−→βω λy : φ.λz : ω.yφ

where α = φ→ ω → φ and the arrows are decorated with the applied rule.
The following is, instead, a simple application of Rule [βu]

(λx : φ.xφ)yφ −→ yφ (λx : ψ.xψ)yψ −→ yψ

[βu]
(λx : φ u ψ.xφ∧ψ)yφ∧ψ −→ yφ∧ψ

We list below the main results from [2].

Theorem 1. If `M : τ and M −→ N , then ` N : τ .

Define ‖M‖ as the pure λ-term obtained from M by erasing all types and
replacing Ω with (λx.xx)(λx.xx).

Theorem 2. If M −→ N , then ‖M‖ −→β ‖N‖.

Theorem 3. If ‖M‖ −→β P , then there is a TIC term N such that ‖N‖ = P
and either M −→ N or N = M .

Theorem 4. A TIC term M has a head normal form iff type(M) 6= ω.

Related works. In the literature there are many proposals for typed λ-calculi
à la Church with intersection types. We only recall here some of the most sig-
nificant ones.

The calculus of [15] has branching types and types with quantification over
type selection parameters. There `∩ λx.x : (φ → φ) ∩ (ψ → ψ) is represented
by Λ(join{i = ?, j = ?}).λx{i=φ,j=ψ}.x{i=φ,j=ψ}, where join{i = ?, j = ?} is a
branching type. Branching types avoid duplication, since they “squash together”
the premises of the intersection introduction typing rule.

In the calculus of [12] typing depends on an “imperative-like” formulation of
context, assigning types to term-variables at a given mark/location, and on a
new notion of store, that remembers, trough modalities, the associations between
marks and types. For example, `∩ λx.x : (φ→ φ) ∩ (ψ → ψ) can be written as
the term (λx : 0.x)@(λ0 : φ.0) ∩ (λ0 : ψ.0) where 0 is a mark, and the modality
for the subterm λx : 0.x is (λ0 : φ.0) ∩ (λ0 : ψ.0).

A parallel term constructor | representing the intersection is instead intro-
duced in [6]. This allows to obtain, for any type derivation in the system `∩,
a corresponding type decorated term. For example, the term corresponding to
`∩ λx.x : (φ→ φ) ∩ (ψ → ψ) is λxφ.xφ|λyψ.yψ.

A new and interesting solution is represented by dimensional intersection
type calculi [10,11]. The typing judgements are of the shape Γ ` P : µ, where P

is an elaboration, i.e., a λ-term where each sub-term is decorated with the set of
types assigned to it. These decorations are enclosed between angle brackets. For



example, the judgement in dimensional intersection type calculi corresponding
to `∩ λx.x : (φ→ φ) ∩ (ψ → ψ) is

`<> (λx.x〈φ, ψ〉)〈φ→ φ, ψ → ψ〉 : (φ→ φ) ∩ (ψ → ψ)

Our proposal is worthy of inclusion in the above scenario. Differently from
the mentioned calculi, TIC has more type constructors and a less permissive type
syntax than the type assignment system in [4]. Besides, it lacks the subsumption
rule, as well as weakening and contraction. This implies that we do not have
the isomorphism between typing à la Curry and à la Church, which is a feature
of the calculi in [15,12,6,10,11]. However, due to the presence of the universal
type ω, we characterise the λ-terms having head normal forms, while the calculi
in [15,12,6,10,11] characterise strongly normalising λ-terms.

We split the intersection into distinct constructors taking inspiration from [14],
where two distinct conjunction constructors reflect two possible shapes of deriva-
tions. The synchronous conjunction can be used only among equivalent deduc-
tions, while the asynchronous conjunction can be used among arbitrary deriva-
tions. This is the basis for building a logical system which is a proof theoretical
justification of intersection type assignment systems.

The use of different constructors for abstracted variables and terms in our
type system is reminiscent of the different linear logic conjunction operators used
both on the left and on the right hand side of the linear logic entailment. This
could be the starting point of an investigation on the notion of strong conjunction
for linear logic and hence, via realisability, on a notion of “intersection linear
types”.
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