
Call-by-Value Typing Revisited, for Free ?

Victor Arrial

Université Paris Cité, CNRS, IRIF, France

Abstract. In this paper, we introduce an alternative quantitative typing
system V ′ for dCBV.

1 Introduction

Bang Calculus. P.B. Levy introduced Call-by-Push-Value (CBPV) [19] as a sub-
suming language to encompass various evaluation strategies of the λ-calculus
through two simple primitives: thunk (to pause a computation) and force (to
resume a computation). This mechanism is powerful enough to encode, in par-
ticular, Call-by-Name (CBN) and Call-by-Value [20] (CBV). The original CBPV has
been introduced in a simply typed framework, but the underlying (untyped)
syntax and operational semantics –the ones we are interested in here– already
provide a robust subsuming mechanism. Drawing inspiration from it and Girard’s
Linear Logic (LL) [15], Ehrhard and Guerrieri [12] introduced an (untyped) re-
striction of CBPV, named BANG-calculus, already capable of subsuming both CBN
and CBV. It is obtained by enriching the λ-calculus with two modalities ! and
its dual der. The modality ! actually plays a twofold role: it freezes the evalu-
ation of subterms (called thunk in CBPV), and it marks what can be duplicated
or erased during evaluation (i.e. copied an arbitrary number of times, including
zero). The modality der annihilates the effect of !, effectively restoring computa-
tion and eliminating duplicability. Embedding CBN or CBV into the BANG-calculus
simply consists in decorating λ-terms with ! and der, thereby forcing one model
of computation or the other one. Thanks to these elementary modalities and
embeddings, the Bang Calculus eases the identification of shared behaviors and
properties, encompassing both syntactic and semantic aspects.

Static and dynamic. The literature has shown that some static properties (i.e.
centered on terms) of CBN and CBV, including normal forms [18], quantitative typ-
ing [9], tight typing [18, 10], inhabitation [5], and denotational semantics [16],
can be inferred from their corresponding counterparts in the Bang Calculus by
exploiting suitable CBN and CBV encodings. However, retrieving dynamic proper-
ties (i.e. centered on reduction) from the Bang Calculus into CBN or CBV turned
out to be a more intricate task, especially in their adequate (distant) variant [16,
9, 13, 10]. Indeed, it is easy to obtain simulation (a CBN or CBV reduction sequence
is always embedded into a BANG reduction sequence), but the converse, known
as reverse simulation, fails [6, 10]: a BANG reduction sequence from a term in the
image of the CBN or CBV embedding may not correspond to a valid reduction
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sequence in CBN or CBV. To recover this property, an alternative CBV encoding
was introduced in [6] and allows to project for free of the diamond property,
confluence and factorization directly from BANG to CBN and CBV. Yet, all use
cases of this new embedding have been limited to syntactical properties.

Contributions. This paper concentrates on the preservation of typed properties
through the newly introduced CBV embedding [6]. We propose an alternative
quantitative typing system for the distant CBV λ-calculus and prove that it is
preserved by the embedding. Additionally, we prove for free the subject reduction
and expansion property, along with soundness and completeness of this new
typing system by a simple projection from the distant BANG-calculus and its
quantitative typing system.

2 The (Distant) Bang Calculus

Syntax. We introduce the term syntax of dBang [9]. Given a countably infinite
set X of variables x, y, z, . . . , the set Λ! of terms is defined inductively as follows:

(Terms) t, u, s ::= x ∈ X | tu | λx.t | !t | der(t) | t[x\u]

Abstractions λx.t and closures t[x\u] bind the variable x in their body t. Free
and bound variables are defined as expected. The usual notion of α-conversion
[8] is extended to the whole set Λ!, and terms are identified up to α-conversion.
Finally, we denote by t{x\u} the usual (capture avoiding) meta-level substitution
of u for all free occurrences of x in t.

Full contexts (F), surface contexts (S) and list contexts (L), which can
be seen as terms with exactly one hole ⋄, are inductively defined by:

(dBang Full Ctxt) F ::= ⋄ | λx.F | F t | t F | F[x\t] | t[x\F] | der(F) | !F
(dBang Surface Ctxt) S ::= ⋄ | λx.S | S t | t S | S[x\t] | t[x\S] | der(S)

(dBang List Ctxt) L ::= ⋄ | L[x\t]

We write F⟨t⟩ for the term obtained by replacing the hole in F with the term t
(possibly capturing the free variables of t).

Operational Semantics. The following rewrite rules are the base components
of our reductions.

L⟨λx.t⟩u 7→dB L⟨t[x\u]⟩ t[x\L⟨!u⟩] 7→s! L⟨t{x\u}⟩ der(L⟨!t⟩) 7→d! L⟨t⟩

Rule dB (resp. s!) is assumed to be capture-free, so no free variable of u (resp.
t) is captured by the context L. In all of these rewrite rules, the reduction acts
at a distance [1, 2]: the main constructors involved in the rule can be separated
by a finite —possibly empty— list L of ES.

The surface (resp. full) reduction →S (resp. →F) is the defined as the union
of the closure of the relations {dB, s!, d!} by surface (resp. full) contexts. For
example, (λx.!der(!x))!y →S (!der(!x))[x\!y] →S !(der(!y)) →F !y. Finally,
we denote by →∗

F (resp. →∗
S) the reflexive transitive closure of →F (resp. →S).
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(var)
x : [σ] ⊢ x : σ

Γ ⊢ t : M ⇒ σ ∆ ⊢ u : M
(app)

Γ +∆ ⊢ t u : σ

(Γi ⊢ t : σi)i∈I
(bg)

+i∈IΓi ⊢ !t : [σi]i∈I

Γ, x : M ⊢ t : σ
(abs)

Γ ⊢ λx.t : M ⇒ σ

Γ, x : M ⊢ t : σ ∆ ⊢ u : M
(es)

Γ +∆ ⊢ t[x\u] : σ
Γ ⊢ t : [σ]

(der)
Γ ⊢ der(t) : σ

Fig. 1: Type System B for the dBang-calculus.

Clashes. As a matter of fact, some ill-formed terms are not redexes but neither
represent a desired computation result. They are called clashes and have one
of the following forms:

L⟨!t⟩u t[x\L⟨λx.u⟩] der(L⟨λx.t⟩) t(L⟨λx.u⟩) if t ̸= L′⟨λy.s⟩

This static notion of clash is lifted to a dynamic level. A term t is a surface
clash-free if it does not surface reduce to a term with a clash in surface position.
This notion is stable under reduction.

Quantitative Type System. We present the quantitative typing system B [9],
based on [14, 11]. It contains functional and intersection types. Here, intersec-
tions are associative, commutative but not idempotent, thus an intersection type
is represented by a (possibly empty) finite multiset [σi]i∈I . Formally, given a
countably infinite set T V of type variables α, β, γ, . . . , we define by mutual in-
duction:

(Types) σ, τ, ρ := α ∈ T V | M | M ⇒ σ
(Multitypes) M,N := [σi]i∈I where I is a finite set

Type environments are denoted by Γ or ∆ and we use the usual notations
from [5]. The rules of system B are presented in Fig. 1. Finally, we write Π▷BΓ ⊢
t : σ when Π is a derivation in system B with conclusion Γ ⊢ t : σ, and
▷B Γ ⊢ t : σ if there exists some derivation Π ▷B Γ ⊢ t : σ.

As expected, the typing is preserved along both reduction and expansion.

Lemma 1 (Subject Reduction and Expansion for system B [9, 10]).
Let t, u ∈ Λ! such that t →F u, then ▷B Γ ⊢ t : σ if and only if ▷B Γ ⊢ u : σ.

Moreover, the type system is sound (all typable terms surface-normalize) and
complete (all the surface-normalizing terms are typable).

Lemma 2 (Soundness and Completeness for system B [9, 10]).
Let t ∈ Λ!, then t has a clash free S-normal form if and only if ▷B Γ ⊢ t : σ.

3 The (Distant) Call-by-Value Calculus

Syntax. The call-by-value λ-calculus (called dCBV here) is specified using ES and
action at a distance [4]. The sets Λ of terms and Υ of values are inductively
defined below:

(Terms) t, u, s ::= v | λx.t | t[x\u] (Values) v ::= x ∈ X | λx.t
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Reductions are driven by the notions of dCBV list contexts (LV)—which allow
actions at a distance—dCBV surface contexts (SV) and dCBV full contexts (FV):

(dCBV List Ctxts) LV ::= ⋄ | LV[x\t]
(dCBV Surface Ctxts) SV ::= ⋄ | SV u | t SV | SV[x\u] | t[x\SV]

(dCBV Full Ctxts) FV ::= ⋄ | FV u | t FV | λx.FV | FV[x\u] | t[x\FV]

Operational Semantics. The following rewrite rules are the base components
of our reductions.

LV⟨λx.t⟩u 7→dB LV⟨t[x\u]⟩ t[x\LV⟨v⟩] 7→sV LV⟨t{x\v}⟩

The surface (resp. full) reduction →SV
(resp. →FV

) is the defined as the union
of the closure of the relations {dB, sV} by surface (resp. full) contexts. Finally, we
denote by →∗

FV
(resp. →∗

SV
) the reflexive transitive closure of →FV

(resp. →SV
).

Embedding. A first dCBV-embedding was introduced in [9, 10]. It allows to sim-
ulate dCBV with dBang (i.e. if t →∗

SV
u (resp. t →∗

FV
u) then tv →∗

S uv (resp.
tv →∗

F uv)). However, the converse known as reverse simulation is false (see
Fig.1 in [6]). A novel dCBV embedding was introduced in [6] to resolve this issue.
It is defined as follows:

Definition 3. The dCBV-embedding ·v′ : Λ → Λ! is defined as follows:

xv
′
:= !x

(λx.t)v
′
:= !λx.!tv

′

(tu)v
′
:=

der
(
L⟨s⟩uv′

)
if tv

′
= L⟨!s⟩

der
(
der

(
tv

′
)
uv

′
)

otherwise

(t[x\u])v′ := tv
′
[x\uv′ ]

The main difference can be found in the abstraction case where two ! are used
instead of one as in [9, 10, 16]. As intended, surface and full reductions sequences
are preserved both ways.

Lemma 4 (dCBV Simulation and Reverse Simulation [6]).
Let t, u ∈ Λ, then t →∗

SV
u (resp. t →∗

FV
u) if and only if tv

′ →∗
S uv

′
(resp. tv

′ →∗
F uv

′
).

Quantitative Type System. A quantitative type system called system V have
been introduced in [9, 10] to characterize SV-normalization. As such, typing is
preserved throughout reduction sequences and by the embedding ·v [9, 10]. How-
ever, this preservation fails with the new embedding ·v′ . For example, the term
λx.Ω is only typable by (∅; [ ]) in system V while its image (λx.Ω)v

′
= !λx.!Ωv′

is also typable by (∅; [[ ] ⇒ [ ]]) in system B.
To address this issue, we now introduce a new quantitative typing system

called system V ′. The rules of typing system V ′ are presented in Fig. 2. The
main differences between system V and V ′ is the addition of a new rule called
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(var)
x : M ⊢ x : M

Γ ⊢ t : [M ⇒ [σ]] ∆ ⊢ u : M
(app)

Γ +∆ ⊢ t u : σ

(Γi ⊢ t : σi)i∈I
(frz)

+i∈IΓi ⊩ t : [σi]i∈I

Γ, x : M ⊢ t : σ ∆ ⊢ u : M
(es)

Γ +∆ ⊢ t[x\u] : σ

(Γi, x : Mi ⊩ t : σi)i∈I
(abs)

+i∈IΓi ⊢ λx.t : [Mi ⇒ σi]i∈I

Fig. 2: Type System V ′ for the dCBV-calculus.

(frz) which resembles the rule (bg) from system B. This rule allows to introduce
untyped subterms. However, it can only be used in the body of abstractions
(thanks to the auxiliary symbol ⊩) and acts as a counterpart to the additional
! in the abstraction case of the novel embedding.

As expected, the typing is preserved by the embedding.

Theorem 5 (Typing Preservation).
Let t ∈ Λ, then ▷V′ Γ ⊢ t : σ if and only if ▷B Γ ⊢ tv

′
: σ.

Proof. By induction on t.

Using simulation, we can then deduce, for free, that the typing is preserved
along full reduction and expansion sequences.

Theorem 6 (Subject Reduction and Expansion of system V ′).
Let t, u ∈ Λ such that t →FV

u, then ▷V′ Γ ⊢ t : σ if and only if ▷V′ Γ ⊢ u : σ.

Proof. Let t, u ∈ Λ such that t →FV
u. Then tv

′ →∗
F uv

′
. Using Thm. 6, one

deduces that ▷B Γ ⊢ tv
′
: σ iff ▷B Γ ⊢ uv

′
: σ and therefore ▷V′ Γ ⊢ t : σ iff

▷V′ Γ ⊢ u : σ using Thm. 5.

Moreover, using surface simulation and reverse simulation, we get for free
that system V ′ is sound and complete.

Theorem 7 (Soundness and Completeness of system V ′).
Let t ∈ Λ, then t has a SV-normal form if and only if ▷V′ Γ ⊢ t : σ.

Proof. Let t ∈ Λ, then:
t has a SV-nf Lm.4⇔ tv

′
has a clash free S-nf Th.2⇔ ▷B Γ ⊢ tv

′
: σ

Th.5⇔ ▷V′ Γ ⊢ t : σ. ⊓⊔

4 Conclusion and Future Work

In this paper, we introduced an alternative intersection type system for dCBV
and we have proved that it is preserved by the dCBV-embedding into dBang.
Moreover, we proved that it is sound and complete, and that subject reduction
and expansion holds. Still, we would like to further study the preservation of more
adanced problems such as inhabitation [5] or the typing equivalence generated
by this typing system [3] and relate them to the usual typing system used for
dCBV. Finally, we would like to better understand how this changes affect the
different notions of Böhm approximants and trees from the literature [5, 17, 7].
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