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The higher-order model-checking problem (HOMC) concerns model-checking trees generated by
recursion schemes. The second author and Melliès’s approached HOMC by evaluation in a finitary
semantics of the λY-calculus (simply typed λ-calculus with fixpoints) derived from the Scott model
of linear logic augmented with a colouring modality [Gre16]. Since their semantics do not interpret
arbitrary infinitary λ-terms (or even Böhm trees), the decidability proof is more indirect than
expected. This leads us to state some natural conjectures that would directly imply the decidability
of HOMC (some results in this direction are sketched in Melliès’s follow-up work [Mel17]).

Implicit automata theory is an up-and-coming research programme led by the third and fourth
authors among others that seeks to understand classes of formal languages (such as regular or star-
free languages) and functions (e.g. regular or polyregular string-to-string functions) as correspond-
ing to the expressive power of typed λ-calculi [HK96, NP20, Ngu21, PP24]. Our aforementioned
results help us to extend this programme to ω-automata over infinite strings and trees.

1. The coinductive Scott semantics of infinitary STλC

Recall that the standard interpretation of the simply typed λ-calculus (STλC) in FinScottL!

maps any simple type τ (generated by the grammar σ, τ ::= o | σ → τ) to a preordered set JτK:
• JoK can be arbitrarily chosen – we will always take some finite set of “states” with equality.
• Jσ → τK = P(JσK)× JτK where (X,α)︸ ︷︷ ︸

denoted later by X → α

≤ (Y, β) when ∀y ∈ Y,∃x ∈ X. y ≤ x︸ ︷︷ ︸
“Y ≤ X”

and α ≤ β.

The semantics of a term t : τ is a downwards-closed subset JtK ⊆ JτK. The definition of JtK can
be presented by an intersection type system (this syntactic exposition avoids talking about the
cartesian closed structure of the category FinScottL!, and will be convenient for later extensions):

JtK = {α ∈ JτK | ∅ ⊢ t : α :: τ}

where the judgment Γ ⊢ t : α :: τ is defined by the syntax-directed inference rules below. Note
that on the left of ⊢, the assumption x : X :: τ makes sense when X ⊆ JτK, whereas on the right,
t : α :: τ makes sense when α ∈ JτK.

(Var)
∃α′ ∈ X.α ≤ α′

x : X :: τ ⊢ x : α :: τ
(Abs)

Γ, x : X :: σ ⊢ t : α :: τ

Γ ⊢ λx. t : X → α :: σ → τ

(App)
Γ ⊢ t : X → α :: σ → τ (∀β ∈ X) Γ ⊢ u : β :: σ

Γ ⊢ t u : α :: τ
to which we add a standard weakening rule. We need to include weakening because later, on
infinitary derivations, it will not be clear that all weakenings can be pushed to variables).

For now we have focused on FinScottL! as a model of finitary STλC. The intersection type
system above gives us two obvious ways of extending it to an infinitary λ-term t : τ (where τ is
still a simple type, see e.g. [SW13, §2]): either consider inductive (well-founded) or coinductive
(non-well-founded) derivations to define JtK ⊆ JτK.
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2 FINITARY COLOURED SEMANTICS OF INFINITARY λ-TERMS

We can also interpret the finite λY-calculus by exhibiting a fixpoint operator in the semantics.
Note that this is related to the infinitary λ-calculus by the unfolding operation defined coinductively
by unfold(Y t) = t (unfold(Y t)) and the other obvious other clauses for the other constructors.

Claim 1. For a finite λY-term t : τ , we have:

JtK with least fixpoint semantics = Junfold(t)K with inductive derivations
JtK with greatest fixpoint semantics = Junfold(t)K with coinductive derivations

We will see later (§4.2) that one can get something in-between these extremal possibilities by
considering infinitary λ-terms with boundaries. For now, we focus on the coinductive semantics
(but note that the inductive semantics is the classical domain-theoretic one, where the denotation
of a Böhm tree is the supremum of the denotations of its finite approximants).

The coinductive intersection typing derivations correspond exactly to the run-trees of Melliès’s
higher-order automata [Mel17]. He shows that they indeed define an actual semantics – as in, an
invariant of reduction – for infinitary simply typed λ-terms. It is important to note that this is
highly non-trivial – it is the main technical contribution of [Mel17].

Theorem 2 (rephrasing of [Mel17, Th. 3]). If t has a strongly convergent (potentially infinite)
β-reduction sequence to t′ (notation: t →∞

β t′), then JtK = Jt′K for the coinductive semantics.

The model is a bit limited because these higher-order automata correspond, on Church-encoded
trees, to tree automata with trivial acceptance conditions (this can be seen from the shape of the
derivations). To go further we need to move to the coloured semantics of [Gre16].

2. Adding colours and the parity condition

Fix a set Col = {0, . . . , k} of colours; 0 is a “neutral” colour whereas 1, . . . , k are the priorities
used in parity automata/games of index k. The inductive case in the definition of J−K changes to

Jσ → τK = P(Col× JσK)× JτK

with (c, α) ≤ (c′, β) ⇐⇒ c = c′ ∧ α ≤ β and Y ≤ X, (X → α) ≤ (Y → β) redefined accordingly.

2.1. The semantics of finitary STλC. The intersection type system is adapted as follows. The
only subtle case is application. Inductive derivations suffice to interpret finite simply typed λ-terms.

(Var)
∃(c′, α′) ∈ X. c = c′ ∧ α ≤ α′

x : X :: τ ⊢ x : α :: τ
(Abs)

Γ, x : X :: σ ⊢ t : α :: τ

Γ ⊢ λx. t : X → α :: σ → τ

(App)
Γ ⊢ t : {(c1, β1), . . . , (cn, βn)} → α :: σ → τ (∀i ∈ {1, . . . , n}) Γi ⊢ u : βi :: σ

Γ∪ ↑c1 Γ1 ∪ · · · ∪ ↑cn Γn ⊢ t u : α :: τ

where ↑c (x1 : X1 :: κ1, . . . , xn : Xn :: κn) = x1 :↑c X1 :: κ1, . . . , xn :↑c Xn :: κn and

↑c X = {(max(c, c′)︸ ︷︷ ︸
meant to fit with a parity condition on priorities

, γ) | (c′, γ) ∈ X}

2.2. A fixpoint operator. Finite λY-terms are interpreted in [Gre16] using non-well-founded
derivations with a validity criterion which is a parity condition. To the rules above, one adds:

(Y)
Γ ⊢ t : {(c1, β1), . . . , (cn, βn)} → α :: σ → τ (∀i ∈ {1, . . . , n}) Γi ⊢ Y t : βi :: σ

Γ∪ ↑c1 Γ1 ∪ · · · ∪ ↑cn Γn ⊢ Y t : α :: τ

An edge (labeled with an intersection typing judgment) in a derivation tree is given the colour ci
if it is the premise Γi ⊢ Y t : βi :: σ of some Y-rule of the above shape, otherwise it has colour 0.
A derivation is valid if in all infinite branches, the maximum colour occurring infinitely often is
non-zero and even.
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2.3. Towards an interpretation of infinitary λ-terms. We would like to design a semantics
for infinitary λ-terms, such that for every finite λY-term t,

JtK according to the above interpretation = Junfold(t)K in the new system

The close match between the (App) and (Y) rules above suggest that this must be possible. The
only issue is that in the Y-less system, we do not have a validity criterion yet. The obvious solution
would be to put the colour ci on the premise Γi ⊢ u : βi :: σ of each (App) rule, and keep the
parity condition on branches as it is. This seems to correspond to the notion of higher-order parity
automaton which is sketched but not fully specified in [Mel17].

Claim 3. For t a finite λY-term, JtK using (App+Y)-colouring = Junfold(t)K using (App)-colouring.

This is syntactically obvious. The less obvious relationship with Grellois and Melliès’ original
definition would then be captured by the following conjecture.

Conjecture 4. For t a finite λY-term, JtK using (App + Y)-colouring = JtK using only (Y)-
colouring.

Put together these two statements would imply that our coloured semantics of the infinitary
simply typed λ-calculus indeed extends Grellois and Melliès’s coloured model of the λY-calculus.
But we would need to make sure that it is a true semantics.

Conjecture 5. This coloured semantics of infinitary λ-terms is invariant under infinite reductions.

In Section 4, we shall explain our strategy to tackle the above conjecture. Before that, let us
see some of its consequences.

2.4. Higher-order model checking made easier? Since the coloured semantics of any finite
λY-term can be computed by solving a parity game, the following lemma entails the decidability
of HOMC. Let TreeΣ be the type of Church-encoded trees over some ranked alphabet Σ. Write
J−KQ,k for the coloured semantics whose parameters are JoK = Q and Col = {0, . . . , k}.

Lemma 6. Let t : TreeΣ be a finite λY-term, whose Böhm tree b does not contain unproductive
divergence. Given any alternating parity automaton A with states Q and index k over Σ, one can
determine from JtKQ,k whether A accepts the infinite ranked tree described by b.

In [Gre16], a special case of this lemma (for λY-terms in a certain form coming from recursion
schemes) is proved by rather indirect means, going through a coloured relational semantics with
countable multiplicities and then through games on graphs. We now observe that Lemma 6 would
also follow, more directly, from Conjecture 5.

Proof. First, from the shape of the intersection typing rules, one can see that typing derivations
for a Böhm tree b : TreeΣ closely correspond to runs of alternating parity automata over the
corresponding ranked trees, which suffices to show that:

Claim 7. From JbK one can determine whether b is accepted by such an automaton (with set of
states and index corresponding to the parameters JoK and Col in the semantics).

Assuming Conjecture 5, we would have JtK = Junfold(t)K = JbK where b is the Böhm tree of t,
since unfold(t) →∞

β b. □

Since Conjecture 5 is non-trivial, this would probably not be the easiest proof of the decidability
of HOMC. But it has the advantage of being natural: Conjecture 5 is of obvious independent
interest anyway, as witnessed by another application that we give in the next section.

3. Application to implicit automata: reflection of regular languages

Assume that Conjecture 5 is true. Then we get this result in the spirit of [NP20]:

Corollary 8. Let f : {trees over Σ} → {trees over Γ} be a total function defined by some infinitary
simply typed λ-term t : TreeΣ[τ ] → TreeΓ. (As usual, σ[τ ] = σ{o := τ}.) Then, for any regular
language L of infinite trees over Γ, the inverse image f−1(L) is also regular.
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To be clear, f is defined by t T [τ ] →∞
β f(T ) where ( · ) is the Church encoding.

Proof sketch. By a semantic evaluation argument akin to [HK96, Theorem 3.4]. Consider an
alternating parity automaton A recognising L, with states Q and index k. Then by Claim 7,
Jf(T )KQ,k suffices to determine whether f(T ) ∈ L. We have

Jf(T )KQ,k = Jt T [τ ]KQ,k by Conjecture 5

= JtKQ,k(JT [τ ]KQ,k) semantic interpretation of application

= JtKQ,k(JT KJτKQ,k,k)

with a subtlety: the semantics J−KJτKQ,k,k is defined with base case

JoKJτKQ,k,k = JτKQ,k as preordered sets, not just as sets

so we step out of the setting we were working in until now where the preorder on JoK was equality.
Nevertheless, even with a non-trivial preorder on JoK, the finite family

A an automaton with states JτKQ,k and index k 7→ does A accept T?

of regular predicates on T should entirely determine JT KJτKQ,k,k (a sort of converse to Claim 7),
and thus Jf(T )KQ,k according to the previous computation, which suffices to conclude. □

4. A syntactic reduction from coloured to uncoloured?

In this section we propose some ideas that might lead to a proof of Conjecture 5 without redoing
all the work that went into Theorem 2. We fix JoK and the number k of colours.

4.1. The comonadic translation for finitary STλC. First, we relate the colourless and coloured
semantics by means of a syntactic translation. For finitary STλC, this “comonadic translation”
was derived in [Mel17, §VIII] as the interpretation function into a syntactic model, obtained by
considerations of categorical semantics.1 (See also [Wal19] for a variant.)

A purely syntactic account of the translation may be given as follows. On types, we have ô = o
and σ̂ → τ = σ̂ → · · · → σ̂︸ ︷︷ ︸

k+1 times

→ τ̂ . We then translate terms and their typing derivations as follows:

Γ, x : τ ⊢ x : τ ⇝ Γ̂, x(0) : τ̂ , . . . , x(k) : τ̂ ⊢ x(0) : τ̂

Γ, x : σ ⊢ t : τ

Γ ⊢ λx. t : σ → τ
⇝

Γ̂, x(0) : σ̂, . . . , x(k) : σ̂ ⊢ t̂ : τ̂

Γ̂ ⊢ λ̂x. t = λx(0). . . . λx(k). t̂ : σ̂ → τ

Γ ⊢ t : σ → τ Γ ⊢ u : σ

Γ ⊢ t u : τ
⇝

Γ̂ ⊢ t̂ : σ̂ → τ Γ̂ ⊢↑0 û : σ̂

...
. . . Γ̂ ⊢↑k û : σ̂

Γ̂ ⊢ t̂ u = t̂ (↑0 û) . . . (↑k û) : τ̂

where ↑c û = û[x(i) := x(max(c,i)) | x ∈ dom(Γ), i = 0, . . . , k].
Observe that the translation of type derivations is well-defined because from a type derivation

for Γ̂ ⊢ û : σ̂, one can get a derivation for Γ̂ ⊢↑c û : σ̂ – indeed, the operation ↑c substitutes for
each variable a variable that is given the same type by Γ̂.

Claim 9. For every simple type τ , there is a canonical isomorphism φτ : JτKcoloured
∼−→ Jτ̂Kcolourless

of preordered sets such that for every finite λ-term t : τ,, we have φ(JtKcoloured) = Jt̂Kcolourless.

This should be basically true by definition (thus, proof by mechanical induction).

1More precisely, this syntactic model can be defined as the coKleisli category for the linear exponential comonad
□A = A× · · · ×A (k + 1 times) over the syntactic category of STλC (i.e. the initial cartesian closed category).
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4.2. A validity condition for infinitary λ-terms with boundaries. We would like to extend
this translation to infinitary λ-terms in such a way as to get the expected generalisation of Claim 9.
In order to do so, we first need to recall a refinement of Theorem 2 sketched in [Mel17, §VII].

Definition 10. A boundary B of an infinitary λ-term is a subset of its set of infinite branches.

Now, consider a non-well-founded intersection type derivation D in the colourless system of
Section 1 for an infinitary λ-term t. Notice that every branch (downwards path from the root)
of D maps to a branch of t – indeed D is a labeled “thick subtree”2 of t. (Not just an ordinary
labeled subtree, because the application rule may “explore the argument subterm 0, 1 or several
times”.) Thus, a boundary B of t induces a validity criterion: every infinite branch of D must
map to an element of B. We get the inductive/LFP semantics with the empty boundary, and the
coinductive/GFP semantics with the full boundary.

In general, this defines the ScottL! semantics J(t, B)K of a λ-term with boundary (t, B). Terms
with boundaries can be treated as computational objects: if t →∞

β t′ then the potentially infinite
sequence of reductions canonically transports B to a boundary B′ on t′ [Mel17, Proposition 6]; we
say in this case that “(t, B) →∞

β (t′, B′)”. Theorem 2 then extends to:

Theorem 11 ([Mel17, §VII]). If (t, B) →∞
β (t′, B′) then J(t, B)K = J(t′, B′)K.

4.3. The comonadic translation with boundary. By treating coinductively the rules of §4.1,
we get a translation t 7→ t̂ between infinitary λ-terms. In order to factor the coloured semantics of
the infinitary STλC through this translation, we also need to endow the resulting terms t̂ with a
well-chosen boundary. (Somewhat surprisingly, this has not been already done in [Mel17].) This
boundary will encode a parity condition:

• First, we define from an infinitary λ-term t a node colouring on t̂.
– In x̂, the only node x(0) is given the neutral colour 0.
– In λ̂x. t = λx(0). . . . λx(k). t̂, the λ-nodes have colour 0, and the other nodes keep the

colour they had in t̂.
– In t̂ u = t̂ (↑0 û) . . . (↑k û), the root of each ↑c û is given the colour c, overriding

the colour that it had in û (necessarily 0, by construction). The other nodes in the
subterms t̂, ↑0 û, . . . , ↑k û keep their colours from t̂, û; the new application nodes have
colour 0.

• Then we say that the boundary ∂̂(t) consists of all infinite branches on which the maximum
colour occurring infinitely often is even and non-zero.

The required property is expected to straightforward to prove:

Conjecture 12. For every infinitary simply typed λ-term t : τ , we have φτ (JtKcoloured) = J(t̂, ∂̂(t))K
using the canonical isomorphism φτ : JτKcoloured

∼−→ Jτ̂Kcolourless from Claim 9.

We would also like the comonadic translation to be well-behaved with respect to infinitary
reductions, and this might be more tricky:

Conjecture 13. If t →∞
β t′, then (t̂, ∂̂(t)) →∞

β (t̂′, ∂̂(t′)).

Let us conclude with the following observation:

Theorem 11 ∧ Conjecture 12 ∧ Conjecture 13 =⇒ Conjecture 5.

Acknowledgments. We would like to thank Denis Kuperberg for stimulating discussions about
implicit automata on ω-words.

The first author is supported by a UKRI Future Leaders Fellowship, ‘Structure vs Invariants in
Proofs’, project reference MR/S035540/1. The third author is supported by the LabEx MILyon,
operated by the French National Research Agency (ANR-10-LABX-0070).

2In the vocabulary of French game semanticists, cf. e.g. [BC21].
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