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Abstract Milner’s seminal work on encodings of the λ -calculus into the π-calculus (“functions as
processes” [20]) explains how interaction in π subsumes evaluation in λ . It opened a research strand on
formal connections between sequential and concurrent calculi, covering untyped and typed regimes (see,
e.g., [26, 4, 2, 27, 16, 28]). In a series of recent works ([23, 24, 25, 12, 13]) we have extended this line of
work by considering calculi in which computation is non-deterministic and may be subject to failures—
two relevant features in sequential and concurrent programming models. Because we consider typed
source and target languages, an interesting byproduct of these expressivity results is a new connection
between (non-idempotent) intersection types (in λ ) with session types (in π). In this note, we briefly
review this line of work, and outline directions for future developments.

Setting We focus on typed calculi and study how non-determinism and failures interact with resource-
aware computation. In sequential calculi, non-idempotent intersection types offer one fruitful perspective
at resource-awareness (see, e.g., [8, 17, 18, 21, 5]). Because non-idempotency amounts to distinguish
between types σ and σ ∧σ , this class of intersection types can “count” different resources and enforce
quantitative guarantees. In concurrent calculi, resource-awareness has been much studied using linear
types. Linearity ensures that process actions occur exactly once, which is key to enforce protocol cor-
rectness. In particular, session types [14, 15] specify the protocols that channels must respect; this typing
discipline exploits linearity to ensure absence of communication errors and stuck processes. To our
knowledge, we are the first to consider connections between calculi adopting these two distinct views of
resource-awareness; we do so by relating typed models of sequential and concurrent computation.

On the sequential side, we introduce λ
 
⊕: a λ -calculus with resources, non-determinism, and fail-

ures, which distills key elements from λ -calculi studied in [3, 22]. Evaluation in λ
 
⊕ considers bags of

resources, and determines alternative executions governed by non-determinism. Failure results from a
lack or excess of resources (terms), and is captured by the term failx̃, where x̃ denotes a sequence of
variables. Non-determinism in λ

 
⊕ is confluent: intuitively, given M and N with reductions M −→ M′

and N −→ N′, the non-deterministic sum M⊕N reduces to M′⊕N′. (In contrast, under a non-confluent
approach, as in, e.g., [7], the non-deterministic sum M⊕N reduces to either M or N.)

On the concurrent side, we consider sπ: a session-typed π-calculus with non-determinism and fail-
ure, proposed in [6]. sπ rests upon a Curry-Howard correspondence between session types and (classical)
linear logic, extended with modalities that express non-deterministic protocols that may succeed or fail.
In sπ , non-determinism is confluent.

Contributions Our paper [23] (later extended into [25]) presents the first formal connection between
a λ -calculus with non-idempotent intersection types and a π-calculus with session types. Specifically, in
that work we develop the following contributions:

1. The resource calculus λ
 
⊕, a new calculus that distills the distinctive elements from previous

resource calculi [4, 22], while offering an explicit treatment of failures in a setting with confluent
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non-determinism.

We develop the syntax, semantics, and essential meta-theoretical results for λ
 
⊕. In particular,

using non-idempotent intersection types, we define well-typed (fail-free) expressions and well-
formed (fail-prone) expressions in λ

 
⊕ and establish their properties.

2. An encoding of λ
 
⊕ into sπ , proven correct following established criteria in the realm of rela-

tive expressiveness for concurrency, which attest to an encoding’s quality [10, 19]. We consider
operational correspondence (including completeness and soundness), success sensitiveness, and
compositionality.

3. An encoding of intersection types into session types. Our encoding also enjoys type preserva-
tion: in addition to the encoding of terms into processes, we also have an encoding of intersection
types for λ

 
⊕ into session types for sπ . Such an encoding is interesting, because it precisely de-

scribes how typed interaction protocols (given by session types) can codify sequential evaluation
in which absence and excess of resources leads to failures (as governed by intersection types).

Extensions We have considered extensions of our approach and results in [23, 25], in two directions.

• Unrestricted Resources. While in λ
 
⊕ resources in bags are strictly linear (i.e., usable exactly

once), the case of unrestricted (non-linear) resources is also relevant. In [24], we extend our
languages and results accordingly: we develop λ

! 
⊕ , an extension of λ

 
⊕ in which bags contain

resources that can be consumed an arbitrary number of times (possibly zero). This extension
requires a careful treatment of resource fetching, as a variable can be substituted with either a
linear resource or an unrestricted one, but not both. Using λ

! 
⊕ , the two contributions above (the

calculus itself and its correct encoding into session-typed processes) are lifted to the setting in
which linear and unrestricted resources coexist.

• Non-Confluent Non-Determinism. Although results involving confluent non-determinism are
significant, usual (non-confluent) non-determinism remains of undiscussed convenience in formal
modeling. In [12, 13], we adapt our developments in [23, 24, 25] (which rely on confluent non-
determinism), to the case of non-confluent non-determinism. We define new functional and con-
current calculi, following the approach and typing disciplines used for the confluent case. As in our
previous works, the translation of types abstractly describes how non-deterministic fetches are cod-
ified as non-deterministic session protocols. Interestingly, the translation of types in [12, 13] is the
same as in [24]. While not extremely surprising, it is pleasant that the translation of types remains
unchanged across different translations with our confluent and non-confluent non-determinism.

The Proposed Talk The proposed talk at ITRS’24 will detail how these contributions entail different
challenges. The first is bridging the different mechanisms for resource-awareness involved (i.e., intersec-
tion types in λ

 
⊕, session types in sπ). A direct encoding of λ

 
⊕ into sπ is far from obvious, as multiple

occurrences of a variable in λ
 
⊕ must be accommodated into the linear setting of sπ . To overcome this

challenge, we introduce a variant of λ
 
⊕ with sharing [11, 9], dubbed λ̂

 
⊕. Our encoding of λ

 
⊕ expres-

sions into sπ processes is then in two steps. We first define a correct encoding from λ
 
⊕ to λ̂

 
⊕, which

conveniently “atomizes” occurrences of the same variable. Then, we define another correct encoding,
from λ̂

 
⊕ to sπ , which extends Milner’s with constructs for non-determinism.
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Another challenge is framing failures in λ
 
⊕ (undesirable computations) as well-typed sπ processes.

Using intersection types, we define well-formed λ
 
⊕ expressions, which can fail, in two stages. First,

we consider λ⊕, the sub-language of λ
 
⊕ without failx̃. We give an intersection type system for λ⊕ to

regulate fail-free evaluation. Well-formed expressions are then defined on top of well-typed λ⊕ expres-
sions. We show that sπ can correctly encode the fail-free λ⊕ but, more interestingly, also well-formed
λ
 
⊕ expressions, which are fail-prone.

As we have seen, up to now the work on λ
 
⊕ (and its several variants) has focused on their role as

representative source languages for a comparison of typed models of computation with non-determinism,
across sequential and concurrent scenarios. In future work, we intend to deepen on the role and properties
of λ

 
⊕ as a typed programming language, in particular exploiting the quantitative perspective enabled by

non-idempotent session types (i.e., extracting measures/bounds on computational steps, see, e.g., [1]).
This study appears as an interesting (and necessary) step for the development of concurrent extensions
of λ

 
⊕ with message-passing concurrency governed by sessions, which are immediately enabled by our

correct translations into sπ .
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