
Modest annotations with intersection types

Aleksy Schubert
alx@mimuw.edu.pl

Faculty of Mathematics, Informatics and Mechanics,
The University of Warsaw,

ul. Banacha 2,
02–097 Warsaw,

Poland

June 21, 2024

Abstract

We propose an intersection type system which is located between tra-
ditional Curry-style presentation of intersection types and a Church style.
In this system one can omit type annotations of variables provided that
they are simple types. Types with intersections are obligatory.

1 Introduction
In many contemporary programming languages (e.g. Python, Ruby, PHP) static
typing is absent as its presence impairs flexibility and requires additional work
[Tra09, NBD+05]. Empirical studies show that indeed strong typing discipline
can make standard programming tasks in one person projects take longer than
when programmed in untyped languages [Han10]. Still, in many empirical set-
tings strong typing shows its advantages [RF21, GBB17, HKR+14, KRS+12].
An important insight can be drawn from one study [SF14] on Groovy, a lan-
guage where types are optional. It shows that types are popular when high-level
structuring constructs are employed, i.e. modules, while are less used in scripts,
tests and code that undergoes frequent changes.

This means that although types are not welcome in small-scale program-
ming, they are essential in bigger, complex projects that involve many people.
This suggests that a possible fruitful design choice for a programming language
is not to avoid types altogether (as e.g. in [Jim00]), but allow simple types to
be inferred automatically, while any more complex types, as relevant to more
complicated developments, to be present obligatorily. This design choice is con-
sistent with the common observation that type systems with more complicated
type forms have the type reconstruction problem either undecidable [Pot80] or
of high computational complexity [KW99].

1

alx@mimuw.edu.pl

(V ar)
Γ, x : σ ⊢ xσ : σ

σ ∈ T→
(V arS)

Γ, x : σ ⊢ x : σ

Γ, x : σ ⊢ M : τ
(→ I)

Γ ⊢ λx : σ.M : σ → τ

Γ, x : σ ⊢ M : τ σ ∈ T→
(→ IS)

Γ ⊢ λx.M : σ → τ

Γ ⊢ M : σ → τ Γ ⊢ N : σ
(→ E)

Γ ⊢ MN : τ

Γ ⊢ M : σ ∧ τ
(∧E1)

Γ ⊢ M : σ

Γ ⊢ M : σ ∧ τ
(∧E2)

Γ ⊢ M : τ

Figure 1: Type assignment rules

2 Preliminaries
First, we present basic notions. As a departure point, we take the system by
Liquori and Ronchi Della Rocca [LR07]. Types are generated from the grammar

σ, τ ::= α | σ ∧ τ | σ → τ

where α ranges over a denumerable set of type atoms. We omit in the grammar
parentheses and consider it to be a definition of a specific inductive type. Simple
types are types without the ∧ connective. The set of simple types is written
T→. The terms are generated from the grammar

M,N ::= xσ | x | λx : σ.M | λx.M | MN

where xσ ranges over a denumerable set of term variables of type σ and x ranges
over term variables for which the intent is to assign simple types to them. Terms
are understood up to α-equivalence, i.e. the renaming of variables bound by λ.

A context Γ is a finite set of pairs x : σ such that if x : σ ∈ Γ and x : τ ∈ Γ
then σ = τ . The type assignment rules of our system are presented in Figure 1.
In the following, we write Γ ⊢ M : σ to state that the judgement is derivable.
We write |M | for the term M with erased type type information. We write
Γ ⊢∧ M : σ when the judgement is derivable in the standard Curry style system.

Notably, the system does not include (∧ I) rule. This is a non-trivial design
choice as demonstrated by Kurata and Takahashi [KT95]. We also do not use
the traditional presentation of the system with help of a type ordering. This is
also a non-trivial design choice that reduces the expressive power of the system.
However, this makes the presentation of the type inference procedure simpler.

Traditionally, we define β-reduction for the system as

(λx : σ.M)N →β M [x := N], (λx.M)N →β M [x := N]

where M [x := N] denotes the usual capture avoiding substitution.
The type system enjoys the following basic properties.

2

Proposition 2.1 (basic properties)

• (Substitution correctness)
If Γ, x : σ ⊢ M : τ and Γ ⊢ N : σ then Γ ⊢ M [x := N] : τ .

• (Subject reduction)
If Γ, x : σ ⊢ M : τ and M →β M ′ then Γ, x : σ ⊢ M ′ : τ .

• (Type erasure) If Γ ⊢ M : τ then Γ ⊢∧ |M | : τ .
• (Type erasure and reduction)

If Γ ⊢ M : τ and M →β N then |M | →β |N |.
• (Strong normalisation)

If Γ ⊢ M : τ then there is no infinite →β-reduction sequence that starts
from M .

A non-standard development is required to prove decidability of the system.
The approach requires introduction of unification-like constraints. We need here
two kinds of unknowns. The first of them are first-order variables, X,Y, etc..
A solution assigns to such variables expressions that may consist both of type
constructors and variables. Certain variables in our setting can assume only
expressions that are build of type atoms and arrows. In such case we annotate
variable with arrow like in X→, Y →, etc.

The second kind of variables, F,G, etc., represent second-order operations
and are always applied to an expression (e.g. F(α ∧ β)). However, these do not
represent the traditional second-order variables where a substitution S assigns
to such a variable F some function such as λx.σ and the result of application of
the solution S(F(τ)) is the expression σ[x := τ]. These are also not traditional
expansion variables where a substitution S assigns to such a variable F some
expression □ ∧ · · · ∧ □ and the result of application of the solution S(F(τ))
is the expression τ1 ∧ · · · ∧ τn where τ i are versions of the expression τ with
appropriately renamed variables. While this approach seems to be the right one
in case the system contains introductions of the ∧ connective, it seems not to
be adequate in case when these are absent.

In our setting a substitution S assigns to a second-order variable F an ex-
pression generated from the grammar

A,B := □ | ■ | A ∧B

with exactly one occurrence of □. Assume that S(F) = A. The result of
application of the substitution to an expression Fσ is A(σ) where

• □(σ) = σ, • ■(σ) is undefined,

• A0 ∧A1(σ0 ∧ σ1) = Ai(σi) in case A1−i(σ1−1) is undefined for i ∈ {0, 1},

• A0 ∧ A1(σ0 ∧ σ1) = A0(σ0) ∧ A1(σ1) in case Ai(σi) is defined for all
i ∈ {0, 1},

3

Note that the operation A(·) is not defined for expressions of the form σ → τ .
This is another situation where the substitution S does not have a well defined
result. To differentiate our second-order variables from other flavours of these,
we call them projection variables.

The unification constraints are generated by a procedure Constr that is in-
voked as Constr(Γ;M) where Γ is a context under which we look for type of
the term M . The procedure operates on projection variables of the form FN

and first-order variables of the form XN for each subterm N of M . As a lit-
tle abuse of the notation we tacitly distinguish in these variable annotations
different occurrences of the same subterm (precise formulation would require
additional marking of different occurrences with address of the subterm in M ,
but this would obscure the notation).

The ultimate goal of the procedure is to generate a set of equation constraints
E such that each solution S of E assigns a first-order expression to XM so that
Γ ⊢ M : S(XM). A substitution S is a solution of an equation A

.
= B when

both S(A) and S(B) are well defined and S(A) = S(B). The substitution is a
solution of E when it is a solution of each element of E.

Definition 1 (Constr(Γ;M))
Given Γ, M we define the function Constr(Γ;M) by induction on M as follows.

1. Constr(Γ;xσ) = {Γ(x) .
= σ, σ

.
= Xx},

2. Constr(Γ;x) = {Γ(x) .
= X→

x },

3. Constr(Γ;MN ; X⃗) = let EM = Constr(Γ;M) and EN = Constr(Γ;N)
in {FM (XM)

.
= FN (XN) → XMN} ∪ EM ∪ EN ,

4. Constr(Γ;λx :σ.M) = let EM = Constr(Γ, x :σ;M)
in {Xλx:A.M

.
= σ → XM} ∪ EM ,

5. Constr(Γ;λx.M) = let EM = Constr(Γ, x : X→
x ;M)

in {Xλx:A.M
.
= X→

x → XM} ∪ EM .

We can now prove the relevant soundness and completeness property.

Proposition 2.2 (Soundness and completeness of Constr)
Assume that Constr(Γ;M) = E.

1. If S is a solution of E then Γ ⊢ M : S(XM).

2. If Γ ⊢ M : A, for some A then there is a solution S of E such that
A = S(XM).

Proof:
We omit the proof due to the space constraints.

It remains to show that the constraints can be solved. We do this by means
of a terminating reduction⇝s defined as follows. In the following E⊎E′ means
the disjoint sum of sets E and E′. We use here also Dec0 and Dec1 that are
defined further below.

4

• E ⊎ {A .
= A}⇝s E,

• E ⊎ {A1 → A2
.
= B1 → B2}⇝s E ⊎ {A1

.
= B1, A2

.
= B2},

• E ⊎ {A1 ∧A2
.
= B1 ∧B2}⇝s E ⊎ {A1

.
= B1, A2

.
= B2},

• E ⊎ {Y .
= B}⇝s E[Y := B] provided that B does not contain Y ,

• E⊎{X→ .
= B}⇝s E[X→ := Dec0(B)]∪Dec1(B) provided that Dec0(B) ̸=

B1 ∧B2 for some B1, B2 and that B does not contain X→,

• E ⊎ {F(X→)
.
= B}⇝s E[F := □] ⊎ {X→ .

= B[F := □]},

• E ⊎ {F(A1 → A2)
.
= B}⇝s E[F := □] ⊎ {(A1 → A2

.
= B)[F := □]},

• E ⊎ {F(X)
.
= B}⇝s E[X := X→] ⊎ {F(X→)

.
= B[X := X→]},

• E⊎{F(X)
.
= B}⇝s E[X := X1∧X2]⊎{F(X1∧X2)

.
= B[X := X1∧X2]},

• E ⊎ {F(A1 ∧A2)
.
= B}⇝s E[F := □] ⊎ {(A1 ∧A2

.
= B)[F := □]},

• E ⊎ {F(A1 ∧A2)
.
= B}⇝s E[F := ■ ∧ F] ⊎ {(F(A2)

.
= B)[F := ■ ∧ F]},

• E ⊎ {F(A1 ∧A2)
.
= B}⇝s E[F := F ∧■] ⊎ {(F(A1)

.
= B)[F := F ∧■]}.

The operations Dec0 and Dec1 are defined by mutual recursion as follows

• Dec0(X) = X→, Dec1(X) = {X .
= X→},

• Dec0(X
→) = X→, Dec1(X

→) = ∅,

• Dec0(F(B)) = X→
F(B), Dec1(F(B)) = Dec1(B) ∪ {F(Dec0(B))

.
= X→

F(B)},

• Dec0(A1 ∧ A2) = Dec0(A1) ∧ Dec0(A2), Dec1(A1 ∧ A2) = Dec1(A1) ∪
Dec1(A2),

• Dec0(A1 → A2) = Dec0(A1) → Dec0(A2), Dec1(A1 → A2) = Dec1(A1) ∪
Dec1(A2), provided that Dec0(Ai) ̸= B1 ∧B2 for some B1, B2.

We can now prove the following statement.

Proposition 2.3 (Soundness and completeness of ⇝s)

• If E ⇝∗
s ∅ then there is a solution of E.

• If E has a solution then E ⇝∗
s ∅.

The relation ⇝s as presented above is not terminating. However, we can
prove that constraints generated by Constr have special form that allows us to
provide a reduction strategy of ⇝s that terminates.

5

References
[GBB17] Zheng Gao, Christian Bird, and Earl T. Barr. To type or not to type:

Quantifying detectable bugs in javascript. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE), pages
758–769, 2017.

[Han10] Stefan Hanenberg. An experiment about static and dynamic type
systems: doubts about the positive impact of static type systems on
development time. SIGPLAN Not., 45(10):22–35, oct 2010.

[HKR+14] Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Éric
Tanter, and Andreas Stefik. An empirical study on the impact
of static typing on software maintainability. Empir. Softw. Eng.,
19(5):1335–1382, 2014.

[Jim00] Trevor Jim. A polar type system. In José D. P. Rolim, Andrei Z.
Broder, Andrea Corradini, Roberto Gorrieri, Reiko Heckel, Juraj
Hromkovic, Ugo Vaccaro, and J. B. Wells, editors, ICALP Work-
shops 2000, Proceedings of the Satelite Workshops of the 27th In-
ternational Colloquium on Automata, Languages and Programming,
Geneva, Switzerland, July 9-15, 2000, pages 323–338. Carleton Sci-
entific, Waterloo, Ontario, Canada, 2000.

[KRS+12] Sebastian Kleinschmager, Romain Robbes, Andreas Stefik, Stefan
Hanenberg, and Eric Tanter. Do static type systems improve the
maintainability of software systems? an empirical study. In 2012
20th IEEE International Conference on Program Comprehension
(ICPC), pages 153–162, 2012.

[KT95] Toshihiko Kurata and Masako Takahashi. Decidable properties of
intersection type systems. In Mariangiola Dezani-Ciancaglini and
Gordon Plotkin, editors, Typed Lambda Calculi and Applications,
pages 297–311, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

[KW99] A. J. Kfoury and J. B. Wells. Principality and decidable type infer-
ence for finite-rank intersection types. In Andrew W. Appel and Alex
Aiken, editors, POPL ’99, Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San
Antonio, TX, USA, January 20-22, 1999, pages 161–174. ACM,
1999.

[LR07] Luigi Liquori and Simona Ronchi Della Rocca. Intersection-types à
la church. Information and Computation, 205(9):1371–1386, 2007.

[NBD+05] Oscar Nierstrasz, Alexandre Bergel, Marcus Denker, Stéphane
Ducasse, Markus Gälli, and Roel Wuyts. On the revival of dynamic
languages. In Thomas Gschwind, Uwe Aßmann, and Oscar Nier-
strasz, editors, Software Composition - 4th International Workshop,

6

SC@ETAPS 2005, Edinburgh, UK, April 9, 2005, Revised Selected
Papers, volume 3628 of Lecture Notes in Computer Science, pages
1–13. Springer, 2005.

[Pot80] Garrel Pottinger. To H. B. Curry, Essays in Combinatory Logic,
Lambda-Calculus and Formalism, chapter A type assignment for the
strongly normalizabile λ-terms. Academic press, 1980. Ed. J. R.
Hindley and J. P. Seldin.

[RF21] Jaakko Rinta-Filppula. Is static type checking worth it? on the pros
and cons of adding a static type checker to an existing codebase.
Master’s thesis, Faculty of Information Technology and Communi-
cation Sciences, Tampere University, 2021.

[SF14] Carlos Souza and Eduardo Figueiredo. How do programmers use
optional typing? an empirical study. In Proceedings of the 13th
International Conference on Modularity, MODULARITY ’14, page
109–120, New York, NY, USA, 2014. Association for Computing
Machinery.

[Tra09] Laurence Tratt. Dynamically typed languages. Adv. Comput.,
77:149–184, 2009.

7

	Introduction
	Preliminaries

