
Non-Idempotent Intersection Types for Global State

Miguel Ramos∗

DCC/FCUP - Dept. of Computer Science, Faculty of Sciences of the University of Porto
Rua do Campo Alegre s/n, 4169-007 Porto, Portugal

LIACC - Artificial Intelligence and Computer Science Laboratory
Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

Abstract

We show how a type system based on non-idempotent intersection types can be used to
characterize termination for an extension of the λ-calculus with a notion of global state.

1 Introduction

Type systems are syntactic methods for ensuring that programs behave well. Traditionally, they
are used for ensuring safety during program execution [Mil78]. However, type systems can also be
used to ensure other desirable properties of programs, such as termination.

Intersection Types. Type systems based on intersection types not only guarantee termi-
nation, but also characterize it [CD78]. Moreover, by considering intersections to be non-
idempotent [KW99, NM04], none of the power of (idempotent) intersection types is lost but proving
termination becomes much simpler. Indeed, while idempotent intersection types are purely qual-
itative in nature, non-idempotent intersection types have a quantitative nature. Very roughly, in
type systems based on non-idempotent intersection types, the size of the derivation tree of a well-
typed program is a good measure for termination because it strictly decreases with each evaluation
step [BKV17]. Remark that associativity, commutativity and idempotency are granted if intersec-
tions are denoted by sets. Therefore, it is natural to represent non-idempotent intersections by
multisets. This convention will be adopted throughout this work.

Algebraic Effects. Intersection types have been successfully used for reasoning about properties
of the pure λ-calculus. However, current programming languages are effectful : they raise and
handle exceptions, perform I/O, sample from distributions, interact with a global state, and so
on. Therefore, it is important to understand how intersection types can be used to reason about
properties of extensions of the λ-calculus with effects. In [Mog89, Mog91],monads are used to obtain
a uniform denotational semantics for effects and a computational version of λ-calculus where effects
are obtained by adding appropriate operations is introduced. However, there is no mention of how
computational effects are actually produced. It was only in [PP02] that algebraic operations were
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introduced as a way of giving monadic semantics to the operations that produce effects: effects
are realized by families of operations and monads are generated by their equational theory. Effects
that can be represented by an equational theory and whose operations produce the effects at hand
are called algebraic effects.

Monadic Intersection Types. More recently, intersection types have been successfully used
to reason about properties of extensions of the λ-calculus with specific effects, such as probabilis-
tic choice [BL18, LFR21], pure nondeterminism [TK14], global state [dT21, dT23, AKR23], and
database queries [CT23]. Notably, in [GTV24], intersection types are used to reason in a uniform
way about properties of extensions of the λ-calculus with different combinations of effects, such
as output, cost, and pure and probabilistic nondeterminism. This is achieved by extending the
λ-calculus with algebraic operations and allowing intersection types to be effectful. This gener-
alizes existing effectful intersection type systems, such the one for probabilistic nondeterminism
in [LFR21], where instead of intersection types, multidistributions of intersection types are used.
The reason why multidistributions are adopted instead of distributions is addressed in [LFR21], but
made more precise in [GTV24]: results involving forms of reversibility, such as subject expansion,
are simply not available when monads are not weakly cartesian, i.e. when there is loss of infor-
mation about the performed effect during evaluation. Indeed, for the particular case of algebraic
effects, this means that subject expansion only holds for those effects that are represented by an
linear equational theory, i.e. one where equations cannot duplicate variables.

Contribution and Overview. Following the idea in [dT21, dT23] of using intersection types to
reason about an extension of the λ-calculus with global state, and the monadic approach of [GTV24]
to intersection types, we show how non-idempotent intersection types can be used in order to
characterize termination for an extension of the λ-calculus with global state, as was first introduced
in [AKR23]. At first glance, one would expect this to follow from simply extending a call-by-value
(CbV) version of the λ-calculus with a global state and then taking the algebraic approach of [PP02]
of adding to the calculus the operations whose equational theory generates the global state monad.
Unfortunately, this is not possible due to the global state monad not being weakly cartesian, which
means that subject expansion does not hold. Indeed, from an algebraic point-of-view, what this
means it that the equational theory that generates the global state monad is not linear, i.e. some of
its equations duplicate variables. Therefore, we first need to find an appropriate equational theory
and notion of global state. To do this we simply linearize the equational theory that generates
the global state monad, obtaining a notion of the global state monad with a log, which turns out
to be a particular instance of the more general notion of update monad in [AU13]. We call this
notion of global state the persistent global state monad, and it is for this notion of global state that
we develop a type system based on monadic non-idempotent intersection types that characterizes
termination.

2 Syntax and Operational Semantics

Let ℓ ∈ L be a location from an enumerable set of locations L. The sets of values, computations,
global state and configurations of Λgs are generated by the following grammars:

(Values) v, w ::= x | λx.t
(Computations) t, u ::= v | vt | getℓ(λx.t) | setℓ(v, u)
(Global State) s, q ::= ϵ | updℓ(v, s)

(Configurations) c ::= (t, s)
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The sets of free and bound variables for terms, states, and configurations are defined as expected.
Terms are considered modulo α-equivalence.

Let lkpℓ(s) be a meta-level algebraic operation. The global state monad is generated by the alge-
braic theory described by following set of equations between infinitary algebraic operations [PP08]:

1. lkpℓ(updℓ(v, s)) = v
2. updℓ1(v, updℓ2(w, s)) = updℓ2(w, updℓ1(v, s)) if ℓ1 ̸= ℓ2
3. updℓ(lkpℓ(s), s) = s if lkpℓ(s) ̸= ⊥
4. updℓ(v, updℓ(w, s)) = updℓ(v, s)

Note that equations (3.) and (4.) are not linear : in both equations, location ℓ appears twice
on the left, but only once on the right. This means that the global state monad is not weakly
cartesian, and thus subject expansion does not hold. Fortunately, if we simply drop equations (3.)
and (4.) from our algebraic theory, we obtain a new algebraic theory that generates instead what
we call the persistent global state monad, which is an instance of the update monad of [AU13].

The small-step semantics of Λgs is defined over closed configurations, i.e. without occurrences
of free variables, and consists of the following reduction steps:

(beta)
((λx.t)v, s) → (t{x\v}, s)

(t, s) → (t′, q)
(right)

(vt, s) → (vt′, q)

lkpℓ(s) = v
(get)

(getℓ(λx.t), s) → (t{x\v}, s)
(set)

(setℓ(v, t), s) → (t, updℓ(v, s))

Note that the operational semantics of Λgs is based on a CBV strategy. In particular, the β-step
only fires if the argument is a value. The reflexive and transitive closure of → is written ↠.

The set of closed blocked configurations blocked is the smallest set consisting of configurations
of the following two forms:

(getℓ(λx.u), s) where lkpℓ(s) = ⊥ (vt, s) where (t, s) ∈ blocked

The set of closed configuration in normal form is the smallest set consisting of all configurations
in blocked plus all closed configurations of the form (λx.t, s).

Proposition 2.1 (Syntactic Characterization of Closed Configurations in Normal Form). Let c =
(t, s) be a closed configuration. Then, c ̸→ iff c ∈ blocked or t is a λ-abstraction.

The set of unblocked closed configurations in normal form is the smallest set consisting of all
closed configurations of the form (λx.t, s). These configurations are called final configurations.

Proposition 2.2 (Syntactic Characterization of Final Configurations). Let c = (t, s) be a closed
configuration. Then, c ̸→ and c ̸∈ blocked iff t is a λ-abstraction.

A configuration c1 is said to be terminating if there exists some final configuration c2, such that
c1 ↠ c2.

3 Monadic Type System

The key idea behind the monadic type system is to allow non-idempotent intersection types to be
effecful. This is obtained by considering a combination of Girard’s [Gir87] and Moggi’s [Mog89]
CBV translations of intuitionistic logic into linear logic and the monadic framework, respectively.
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Let T be a monad. For the particular case of function types, we have !A ⊸ T (!A), and if we take
T to be the persistent global state monad TX = S⋆ ⇒ (X × S⋆), where S⋆ is the log of state S,
and S is (!A)L, we have !A ⊸ S⋆ ⇒ (!A⊗ S⋆).

The sets of multiset types, value types, computation types, state types, and configuration types,
are generated by the following grammars:

(Multiset Types) m,n ::= [τi]i∈I where I is a finite set
(Value Types) τ ::= m ⊸ µ

(Computation Types) µ ::= σ ⇒ ρ
(Global State Types) σ ::= ϵ | updℓ(m,σ)
(Configuration Types) ρ ::= (m⊗ σ)

Note that global state types are persistent global states of multiset types. Thus, we will consider
two global state and global state types to be equal if they are equivalent up-to equation (2). This
will also allow us to omit equation (1) and simply assume that any global state type will always be
written with the relevant update operation in its outermost position.

The typing system of Λgs is defined by the following set of typing rules:

(ax)
x : [τ ] ⊢ x : τ

Γ ⊢ v : m ⊸ (σ′ ⇒ ρ) ∆ ⊢ t : σ ⇒ (m⊗ σ′)
(app)

Γ ⊔∆ ⊢ vt : σ ⇒ ρ

Γ;x : m ⊢ t : µ
(abs)

Γ ⊢ λx.t : m ⊸ µ

(Γi ⊢ v : τi)i∈I
(many)

⊔i∈IΓi ⊢ v : [τi]i∈I

Γ ⊢ v : m
(unit)

Γ ⊢ v : σ ⇒ (m⊗ σ)

Γ;x : m ⊢ t : updℓ(n, σ) ⇒ ρ
(get)

Γ ⊢ getℓ(λx.t) : updℓ(m ⊔ n, σ) ⇒ ρ

Γ ⊢ v : m ∆ ⊢ t : updℓ(m,σ) ⇒ ρ
(set)

Γ ⊔∆ ⊢ setℓ(v, t) : σ ⇒ ρ

(emp-state)
⊢ ϵ : ϵ

Γ ⊢ v : m ∆ ⊢ s : σ
(upd-state)

Γ ⊔∆ ⊢ updℓ(v, s) : updℓ(m,σ)

Γ ⊢ t : σ ⇒ ρ ∆ ⊢ s : σ
(conf)

Γ ⊔∆ ⊢ (t, s) : ρ

where ⊔ is used to denote multiset union. And we assume the usual notions of contexts and
judgements for type system based on multiset type and point the reader to [BKV17] for details.
Formal type derivations are denoted by Φ. The size of a type derivation Φ is denoted by sz(Φ) and
defined as the number of typing rules of Φ except rule (many) and rules (emp-state), (upd-state).

Lemma 3.1 (Typability of Configurations).

1. (Typed Configurations are Unblocked) If Φ ▷ Γ ⊢ c : ρ, then c /∈ blocked.

2. (Final Configurations are Typable) If c is a final configuration, then Φ ▷ ∅ ⊢ c : ρ.

In order to show that our type system is sound and complete with respect to our notion of
termination, we must first show the usual subject reduction and expansion properties. Fortunately,
we can now take advantage of the quantitative nature of non-idempotent intersection types by
stating a weighted version of the subject reduction property that simplifies the proof of termination.

Lemma 3.2 (Weighted Subject Reduction and Expansion).

1. (WSR) Let Φc1 ▷ ∅ ⊢ c1 : ρ. If c1 → c2, then Φc2 ▷ ∅ ⊢ c2 : ρ, such that sz(Φc1) > sz(Φc2).
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2. (WSE) Let c1 be a closed configuration and Φc2 ▷ ∅ ⊢ c2 : ρ. If c1 → c2, then Φc1 ▷ ∅ ⊢ c1 : ρ.

At this point, we can illustrate why it is necessary to drop equation 3. and 4. in order to have
the subject expansion property. Consider the following evaluation step:

c1 = (setℓ(v1, t), updℓ(v2, ϵ)) → (t, updℓ(v1, ϵ)) = c2.

and note that updℓ(v1, ϵ) = updℓ(v1, updℓ(v2, ϵ)) by equation 4. The type derivation for c2 must be
of the following form:

∅ ⊢ t : updℓ(m, ϵ) ⇒ ρ

∅ ⊢ v1 : m
(emp-state)

⊢ ϵ : ϵ
(upd-state)

∅ ⊢ updℓ(v1, ϵ) : updℓ(m, ϵ)
(conf)

∅ ⊢ (t, updℓ(v1, ϵ)) : ρ

But then it is impossible to build a type derivation for c1
1:

∅ ⊢ v1 : m ∅ ⊢ t : updℓ(m, ϵ) ⇒ ρ
(set)

∅ ⊢ setℓ(v1, t) : ϵ ⇒ ρ

∅ ⊢ v2 : [ ]
(emp-state)

⊢ ϵ : ϵ
(upd-state)

∅ ⊢ updℓ(v2, ϵ) : updℓ([ ], ϵ)
(conf)

∅ ⊢ (setℓ(v1, t), updℓ(v2, ϵ)) : ?

since ϵ ̸= updℓ([ ], ϵ). It is worth noting that, even though we are using a more sophisticated notion
of global state, since we are not losing any information, we can recover the original notion of the
global state monad by simply ignoring the log that is present in the persistent global state monad.

Theorem 3.3 (Soundness and Completeness). Let c be a closed configuration. Then, c is typable
iff c is terminating. Moreover, if Φ ▷ ∅ ⊢ c : ρ, then c terminates in at most sz(Φ) steps.

Proof. Let c1 be a closed configuration. If c1 is typable, then c1 ̸∈ blocked by Lemma 3.1.1, and
c1 is terminating by Lemma 3.2.1. If c1 is terminating, there exists a final configuration c2, such
that c1 ↠ c2. Clearly, c2 must be typable by Lemma 3.1.2. Thus, c1 is typable by Lemma 3.2.2.
In both cases, if Φ ▷ ∅ ⊢ c : ρ, then c terminates in at most sz(Φ) steps by the weighted nature
of Lemma 3.2.1.

4 Conclusion and Future Work

This work continues the recent trend of using idempotent and non-idempotent intersection types
to reason about extensions of the λ-calculus with effects.

As future work, we would like to extend the results obtained in [GTV24] to the persistent
global state monad and other effects, such as I/O, whose equational theories have not only an
algebraic, but also coalgebraic structure. That is, whose behavior crucially depends on some notion
of environment [PP08].

Acknowledgements. We would like to thank the reviewers for their valuable comments and
suggestions, which helped us improve the quality of this work.

1It is interesting to note that this problem can be solved if we add a typing rule for typing global states that
allows us to ignore locations that have not been used so far. However, this will simply lead to other problems, as we
illustrate in Appendix A.

5



References

[AKR23] Sandra Alves, Delia Kesner, and Miguel Ramos. Quantitative global memory. In
Helle Hvid Hansen, Andre Scedrov, and Ruy J. G. B. de Queiroz, editors, Logic,
Language, Information, and Computation - 29th International Workshop, WoLLIC 2023,
Halifax, NS, Canada, July 11-14, 2023, Proceedings, volume 13923 of Lecture Notes in
Computer Science, pages 53–68. Springer, 2023.

[AU13] Danel Ahman and Tarmo Uustalu. Update monads: Cointerpreting directed containers.
In Ralph Matthes and Aleksy Schubert, editors, 19th International Conference on Types
for Proofs and Programs, TYPES 2013, April 22-26, 2013, Toulouse, France, volume 26
of LIPIcs, pages 1–23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013.

[BKV17] Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection
types for the lambda-calculus. Log. J. IGPL, 25(4):431–464, 2017.

[BL18] Flavien Breuvart and Ugo Dal Lago. On intersection types and probabilistic lambda cal-
culi. In David Sabel and Peter Thiemann, editors, Proceedings of the 20th International
Symposium on Principles and Practice of Declarative Programming, PPDP 2018,
Frankfurt am Main, Germany, September 03-05, 2018, pages 8:1–8:13. ACM, 2018.

[CD78] Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type assignment for λ-terms.
Arch. Math. Log., 19(1):139–156, 1978.

[CT23] Claudio Sacerdoti Coen and Riccardo Treglia. Properties of a computational lambda cal-
culus for higher-order relational queries. In Giuseppa Castiglione and Marinella Sciortino,
editors, Proceedings of the 24th Italian Conference on Theoretical Computer Science,
Palermo, Italy, September 13-15, 2023, volume 3587 of CEUR Workshop Proceedings,
pages 254–267. CEUR-WS.org, 2023.

[dT21] Ugo de’Liguoro and Riccardo Treglia. Intersection types for a λ-calculus with global
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A On Ignoring Locations when Typing Global States

It might be tempting to add the following rule to the type system, which allows us to locations
that have not been used so far:

Γ ⊢ s : σ lkpℓ(σ) = ⊥
(upd-skip-state)

Γ ⊢ updℓ(v, s) : σ

This would allos us to build a derivation for configuration c1:

∅ ⊢ v1 : m ∅ ⊢ t : updℓ(m, ϵ) ⇒ ρ
(set)

∅ ⊢ setℓ(v1, t) : ϵ ⇒ ρ

(emp-state)
⊢ ϵ : ϵ

(upd-skip-state)
∅ ⊢ updℓ(v2, ϵ) : ϵ

(conf)
∅ ⊢ (setℓ(v1, t), updℓ(v2, ϵ)) : ρ

However, our type system is not longer syntax directed. Indeed, not only can the type derivation
for c2 be of the form given in the main text, but it can also be of the following form:

∅ ⊢ t : ϵ ⇒ ρ

(emp-state)
⊢ ϵ : ϵ

(upd-skip-state)
∅ ⊢ updℓ(v1, ϵ) : ϵ

(conf)
∅ ⊢ (t, updℓ(v1, ϵ)) : ρ

And then it is again impossible to build a type derivation for c1:

∅ ⊢ v1 : [ ] ∅ ⊢ t : ϵ ⇒ ρ
(set)

∅ ⊢ setℓ(v1, t) : ? ⇒ ρ

(emp-state)
⊢ ϵ : ϵ

(upd-state)
∅ ⊢ updℓ(v2, ϵ) : ϵ

(conf)
∅ ⊢ (setℓ(v1, t), updℓ(v2, ϵ)) : ?

since updℓ([ ], ϵ) ̸= ϵ.
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