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Higher order model checking

Given a tree ((G) generated by a recursion

scheme (G and an alternating parity tree
automaton A, does A accept <G>?

Decidable!

« Automata-theoretic methods [HMOS'14]
e Using intersection types [KO'09]

e Using Krivine machines [SW'16]



Recursion schemes

Typed grammars that generate potentially
infinite ranked trees.



Example
Signature ¥ = {a:2,b:1,c: 0}

S — Fabc
G —
{F:z:yz — zz(Fzy(yz))

(G) =

it



How do intersection
types get in this?



1. HORS = Bohm trees of \Y terms

2. Given an alternating parity automaton A
define an intersection-type system of A\

3. This type system defines a denotational
semantics |e | 4

4.|t| 4is computable for \Y term t

5. A accepts tree defined by HORS
corresponding to tiff gy € |t 4



Finite words in STLC

Suppose ) — {a,, b}
Fix a:=0—0,b:=0—0,e:=0
The word aab is represented by

Az Ay A2z (z(yz))

Strings : (0 - 0) > (0 > 0) >0 — 0

Thm (Hillebrand and Kallenakis'96). L is

regular iff it can be represented by a term
of type Strings|o := 7| — Bool



Finite ranked trees in STLC

Suppose ¥ = {a : 2,b: 0}
Fix a :=o0Xo0—o0,b:=o0
The tree /. s represented by ,\.cca’)\yb:cyy

Treesy : (0 X0 —0) >0—o0

Thm (Folklore?). L is regular iff it can be
represented by a term of type

Treess|o := 7| — Bool



HORS in Y
Signature ¥ = {a:2,b:1,c: 0}

Fixa:=oXo—o,b:=0—o0,c:=o0

S — Fabc
G —
{Fcz:yz — zz(Fzy(yz))

M = MM’ .Y AFAz ydz.zz(Fzy(yz))) uvvw

(G) = BT(M)



Simply-typed )\~

coterms t,u ::=x € Var | Az.t | tu

.V

types O, 7T I=0 \ O —T Finite set of
variables

Regular coterms : coterms with finitely
many subterms.

\Y as a regular coterm:

YM = M(M(...))



XA=Naib}

a:=0—o0,b:=0—o0

(ab)” = Az’ Ay z(y(z(...)))

Streamy := (0 — 0) = (0 — 0) = 0




Fix A=1{0, Y A qy.k:Q > {1,2,.. ., k})
Interpretation of types

[0ja=@Q

o = 7|4 CPHO,L,...,k} x |a|4) x |T]|4

Example

la] ={(X,q) | X =d(g,a)}




An intersection type system

Sequents of the form

i e T B S

E1 X T,
k)ng \_TiJA Q © \_’TJA</

Type derivation coinductively generated by

Jo' e X.a < o
c: XuoThF:anT

Pe: X ot a:rT

(Var) 'FxXe.t: X—a::0—>T1

(Abs)

'tt:{B,6:}—>arto—>7 Thtu:p120 Thtu:pr:0
Ll stuia T




A denotational semantics

i =ha D=t rarir

Prop. |t| 4 C |T| 4 and is down-closed.

Theorem. \_tJ A Is computable for a
regular coterm t.

Conjecture. If ¢ —>%° t' then = Lt'JA :



Solving HOMC

 Let G be a recursion scheme. Take \Y
term t such that BT(t) — (G)

. Unfoldttoa A\* term t'
. We have t’ —> BT (t)

. A accepts BT(t) iffqo € | BT'(t) |4
« But [t'|4 = | BT'(t)| 4 anditis

computable.
e Donel!



Implicit (w)-automata

We will go through (sequential) transducers:

Thm. For every s-transducer language
f : 2% — I'Y thereis aregular coterm

t : Streamy — Streamr such that

tw —35 f(w)

Easy. Code the matrix of the
transducer.



Thm. Every regular coterm

t : Streamy — Streamr represents an s-
transducer.

Harder. Use the finitary
coloured semantics.



Conclusion

Defining a general finitary
coloured semantics on the
level of infinitary terms.

Makes HOMC easier.

Allows for implicit
characterisation of omega-
automata.

Future Work

Solve the conjecture.

Import ideas from Mellies'
work on higher-order
parity automata?

Import ideas from cut
elimination proofs of cyclic
proof theory?

Deterministic automata?



Thanks!

Questions?




