Higher order model checking meets implicit automata

Abhishek De

University of Birmingham, UK

j.w.w. Charles Grellois, Lê Thành Dung (Tito) Nguyên, Cécilia Pradic

Higher order model checking

Given a tree $\langle G \rangle$ generated by a recursion scheme G and an alternating parity tree automaton $\mathcal A$, does $\mathcal A$ accept $\langle G \rangle$?

Decidable!

- Automata-theoretic methods [HMOS'14]
- Using intersection types [KO'09]
- Using Krivine machines [SW'16]

Recursion schemes

Typed grammars that generate potentially infinite ranked trees.

Example

Signature
$$\Sigma=\{a:2,b:1,c:0\}$$

$$G = egin{cases} S
ightarrow Fabc \ Fxyz
ightarrow xz(Fxy(yz)) \end{cases}$$

How do intersection types get in this?

- 1. HORS = Bohm trees of λY terms
- 2. Given an alternating parity automaton ${\cal A}$ define an intersection-type system of λ^{∞}
- 3. This type system defines a denotational semantics $|\bullet|_{\mathcal{A}}$
- 4. $\lfloor t \rfloor_{\mathcal{A}}$ is computable for λY term t
- 5. ${\mathcal A}$ accepts tree defined by HORS corresponding to t iff $q_0 \in |t|_{{\mathcal A}}$

Finite words in STLC

Suppose
$$\Sigma = \{a,b\}$$
 Fix $a := o o o, b := o o o, \epsilon := o$

The word aab is represented by

$$\lambda x^a \lambda y^b \lambda z^\epsilon x(x(yz))$$

$$String_{\Sigma}:(o
ightarrow o)
ightarrow (o
ightarrow o)
ightarrow o
ightarrow o$$

Thm (Hillebrand and Kallenakis'96). L is regular iff it can be represented by a term of type $String_{\Sigma}[o:= au] o Bool$

Finite ranked trees in STLC

Suppose $\Sigma = \{a:2,b:0\}$

Fix $a := o \times o \rightarrow o, b := o$

The tree λ is represented by $\lambda x^a \lambda y^b x y y$

$$Trees_{\Sigma}:(o imes o o o) o o$$

Thm (Folklore?). L is regular iff it can be represented by a term of type

$$Trees_{\Sigma}[o:= au] o Bool$$

HORS in λY

Signature
$$\Sigma=\{a:2,b:1,c:0\}$$

Fix
$$a:=o\times o\rightarrow o, b:=o\rightarrow o, c:=o$$

$$G = egin{cases} S
ightarrow Fabc \ Fxyz
ightarrow xz(Fxy(yz)) \end{cases}$$

$$M = \lambda u^a \lambda v^b \lambda w^c . Y (\lambda F \lambda x \lambda y \lambda z . x z (F x y (y z))) uvw$$

$$\langle G \rangle = BT(M)$$

Simply-typed λ^{∞}

coterms
$$t,u:=x\in extsf{Var}\,|\,\lambda x.t\,|\,tu$$
 types $\sigma, \tau:=o\,|\,\sigma o au$ Finite set of variables

Regular coterms: coterms with finitely many subterms.

 λY as a regular coterm:

$$YM=M(M(\dots))$$

$$\Sigma = \{a, b\}$$

$$a := o \rightarrow o, b := o \rightarrow o$$

$$(ab)^\omega:=\lambda x^a\lambda y^bx(y(x(\dots)))$$

$$ig|Stream_\Sigma:=(o o o) o(o o o) o$$

Fix
$$\mathcal{A}=(Q,\Sigma,\Delta,q_0,\kappa:Q o\{1,2,\ldots,k\})$$

Interpretation of types

$$|o|_{\mathcal{A}} = Q$$

$$|\sigma
ightarrow au|_{\mathcal{A}} \subseteq \mathcal{P}(\{0,1,\ldots,k\} imes |\sigma|_{\mathcal{A}}) imes | au|_{\mathcal{A}}$$

Example

$$\lfloor a \rfloor = \{(X,q) \mid X \models \delta(q,a)\}$$

An intersection type system

Sequents of the form

$$x_1:X_1:: au_1,\ldots,x_n:X_n: au_ndash t:lpha: au$$

Type derivation coinductively generated by

A denotational semantics

$$ig| ig\lfloor t ig
floor_{\mathcal{A}} := \{ lpha \mid arnothing dash t : lpha :: au \} ig|$$

Prop. $\lfloor t \rfloor_{\mathcal{A}} \subseteq \lfloor au \rfloor_{\mathcal{A}}$ and is down-closed.

Theorem. $\lfloor t \rfloor_{\mathcal{A}}$ is computable for a regular coterm t.

Conjecture. If $t o_{eta}^{\infty} t'$ then $\lfloor t \rfloor_{\mathcal{A}} = \lfloor t' \rfloor_{\mathcal{A}}$.

Solving HOMC

- Let G be a recursion scheme. Take λY term t such that $BT(t)=\langle G
 angle$
- ullet Unfold t to a λ^∞ term t'
- ullet We have $\,t' o_eta^\infty \, BT(t)$
- ${\mathcal A}$ accepts BT(t) iff $q_0 \in \lfloor BT(t)
 floor_{{\mathcal A}}$
- But $\lfloor t' \rfloor_{\mathcal{A}} = \lfloor BT(t) \rfloor_{\mathcal{A}}$ and it is computable.
- Done!

Implicit (ω) -automata

We will go through (sequential) transducers:

Thm. For every s-transducer language

 $f: \Sigma^\omega o \Gamma^\omega$ there is a regular coterm

 $t: Stream_{\Sigma} o Stream_{\Gamma}$ such that

$$t\overline{w} o_{eta}^{\infty} \overline{f(w)}$$

Easy. Code the matrix of the transducer.

Thm. Every regular coterm

 $t: Stream_{\Sigma} o Stream_{\Gamma}$ represents an stransducer.

Harder. Use the finitary coloured semantics.

Conclusion

Defining a general finitary coloured semantics on the level of infinitary terms.

Makes HOMC easier.

Allows for implicit characterisation of omega-automata.

Future Work

Solve the conjecture.

Import ideas from Mellies' work on higher-order parity automata?

Import ideas from cut elimination proofs of cyclic proof theory?

Deterministic automata?

