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FUNCTIONALITY IN COMBINATORY LOGIC*
By H. B. Curry
DEPARTMENT OF MATHEMATICS, THE PENNSYLVANTA STATE COLLEGE

Communicated September 20, 1934

1. Introduction—In an attempt to resolve the foundations of logic
and mathematics into their elements, it has occurred to several persons
that certain notions, ordinarily taken as primitive, could be analyzed
into constituents of much simpler nature. Among such notions are, on
the one hand, various processes of substitution, and the use of variables
generally; and, on the other hand, the categories of logic—such as propo-
sition, propositional function and the like—together with the intuitions
by which we tell what entities belong to them.

For a theory concerned with an analysis of these notions I have proposed
the name combinatory logic (Amer. Jour. Math., 52, 511 (1930)). This is
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THE A formulation of the
s
smeoic simple theory of types

Publshed onine by Cambridge Unversiy Press:
12 March 2014

Aonzo Church Show atordeats v
- Articie et
The Journal of [owsenn]
‘Symbolic Logic
Extract

Article contents
The purpose of the present paper is
togive a formulation of the simple
theory of types which incorporates
certain features of the calculus of A
conversion. A complete incorporation
of the calculus of \-conversion into
the theory of types is impossible i we
require that Ax and juxtaposition shall
retain their respective meanings as
an abstraction operator and as
denoting the application of function
to argument. But the present partial

et
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Notre Dame Journal of Formal Logic
Volume 21, Number 4, October 1980

An Extension of the Basic Functionality
Theory for the A-Calculus

M. COPPO and M. DEZANI-CIANCAGLINI

1 Introduction  The first works about the assignment of types to terms of
the A-calculus (or combinatory logic) arose in the context of logical theories of
types.* Church [2] presented a first-order system with types based on -
conversion, and since then many systems of this kind have been proposed: a
review of them is given in the introduction of [15]. The problem of adjoining
new objects and deduction rules to combinatory logic is faced in a more general
way in (6] and [7], since Curry is interested in studying the properties of
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Type Reconstruction

the function der(M) either returns a derivation with conclusion

der(MN) =

F M : type(M) or fails

if type(M) =w - aand N =Q

der(M) der(N) 9o :

— E]
FMN:t
if type(M) =9 — a and type(N) = o and 9 <o

der(M(MN))  der(Ma(MN))

[A]
FMN: 11 Ao
if type(M;(MN)) = t;fori=1,2
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Relations with A
“replaces A and & with N

|| || erases types and replaces Q with (Ax.xx)(Ax.xx)

Theorem _ _
Ift M:C, then{x :98|uM,x)=39}rn|M]:C.

Theorem
Given a principal typing (T'; i) there are infinitely many TIC
terms M such that type(M) = uandT = {x : 3| (M, x) = 9}.
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Main properties

Theorem (Subject Reduction)
Ift M:tand M — N, then+ N : 7.

Theorem
If M — N, then [|MI| —s [INII.

Theorem
If[IM|| —g P, then there is a TIC term N such that ||N|| = P and
either M — N or N = M.

Theorem (Characterisation of head normal forms)
A TIC term M has a head normal form iff type(M) # w.
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