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MATHEMATICS: H. B. CURRY

is zero. Then the A's are said to form a basis of the semi-group S. If the
A's are infinite in number, then the basis is said to be infinite, otherwise,
finite.
We immediately see from the above that the well-known factorization

theorems in number-theory are included in theorems concerning basis systems
of a semi-group. For example, the theorem that a rational integer > 1 de-
composes into prime factors uniquely may be stated in the form: The
rational integers > 1 form, under multiplication, a quasi-group with a
unique infinite basis. From the present view-point many factorization
theorems in number theory in which the phrase is used, "aside from unit
factors" now may be translated into theorems in which the behavior of the
unit factors is definitely provided for. In connection with the decomposi-
tion of polynomials with coefficients in the rational field F, Gauss's lemma
and related results may all be stated conveniently as theorems concerning
the possible basis systems in the semi-group formed by multiplication of
polynomials of this type.

1 Werke, Bd. 3, halbband 1, pp. 263-273; H. B. Fine, Bull. Amer. Math. Soc. (1913).
2 Algebra as a study of congruences with respect to functional moduli (Russian)

Odessa (1913?), Chap. 8. I am indebted to Dr. A. E. Ross for an English translation
of this.
3Note on a simple type of Algebra in which the cancellation law of addition does not

hold. Bull. Amer. Math. Soc. (1935).
' Werke, Bd. 3, halbband 1, pp. 260-262.
' Ann. Math., 24, 263-264 (1923).
6 Kronecker, Werke, Bd. 2, pp. 258-9; Van der Waerden, Moderne Algebra, Erster

Teil, pp. 130-1 (1930).

FUNCTIONALITY IN COMBINATORY LOGIC*
By H. B. CuRRY

DEPARTMENT OF MATHEMATICS, THE PENNSYLVANIA STATE COLLEGE

Communicated September 20, 1934

1. Introduction.-In an attempt to resolve the foundations of logic
and mathematics into their elements, it has occurred to several persons
that certain notions, ordinarily taken as primitive, could be analyzed
into constituents of much simpler nature. Among such notions are, on
the one hand, various processes of substitution, and the use of variables
generally; and, on the other hand, the categories of logic-such as propo-
sition, propositional function and the like-together with the intuitions
by which we tell what entities belong to them.
For a theory concerned with an analysis of these notions I have proposed

the name combinatory logic (Amer. Jour. Math., 52, 511 (1930)). This is
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[CuVar]
Γ, x : T ⊢Cu x : T

Γ, x : T ⊢Cu P : U
[Cu→ I]

Γ ⊢Cu λx .P : T → U

Γ ⊢Cu P : T → U Γ ⊢Cu Q : T
[Cu→ E]

Γ ⊢Cu PQ : U
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Extract

The purpose of the present paper is

to give a formulation of the simple

theory of types which incorporates

certain features of the calculus of λ-

conversion. A complete incorporation

of the calculus of λ-conversion into

the theory of types is impossible if we

require that λx and juxtaposition shall

retain their respective meanings as

an abstraction operator and as

denoting the application of function

to argument. But the present partial
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“what can we replace to ? in ⊢ λx : ?.x : (ϕ→ ϕ) ∩ (ψ→ ψ)?”
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3 type constructors for intersection

1. ∧
1.1 xϕ∧ψ

1.2 λx : ϕ ∧ ψ
1.3 ϕ ∧ ψ→ ϕ
1.4 M : ϕ ∧ ψ

2. &
2.1 λx : ϕ&ψ
2.2 ϕ&ψ→ ϕ

3. ⊓
3.1 λx : ϕ ⊓ ψ
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TIC terms
M ::= xσ | λx : κ.M | MM | Ω

[Var]
⊢ xα : α

[ω]
⊢ Ω : ω

⊢ M : α ι(M, x) = θ
[→ I]

⊢ λx : θ.M : θ→ α

⊢ M : ω→ α
[→ Eω]

⊢ MΩ : α

⊢ M : ϑ→ α ⊢ N : σ ϑ ⋉ σ
[→ E]

⊢ MN : α

⊢ M : σ ⊢ N : τ
[∧I]

⊢ M
∧

N : σ ∧ τ
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Type Reconstruction

the function der(M) either returns a derivation with conclusion
⊢ M : type(M) or fails

der(MN) =



der(M)
[→ Eω]

⊢ MN : α
if type(M) = ω→ α and N = Ω

der(M) der(N) ϑ ⋉ σ
[→ E]

⊢ MN : τ
if type(M) = ϑ→ α and type(N) = σ and ϑ ⋉ σ

der(Π1(MN)) der(Π2(MN))
[∧I]

⊢ MN : τ1 ∧ τ2
if type(Πi(MN)) = τi for i = 1,2
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TIC reduction rules

[β&] (λx : & i∈Iσi .M)N −→ M[xσi := Ni]i∈I
where σ = type(N) ⋍

∧
i∈Iσi and Ni = Π̃σi (N) for each i ∈ I

[βω] (λx : ω.M)Ω −→ M

[β⊓]
(λx : κj .Mj)Nj −→ M′j j = 1,2

(λx : κ1⊓κ2.M1

∧
M2)(N1

∧
N2) −→ M′1

∧
M′2
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Relations with ⊢∩

̂replaces ∧ and & with ∩

∥ ∥ erases types and replaces Ω with (λx .xx)(λx .xx)

Theorem
If ⊢ M : ζ, then {x : ϑ̂ | ι(M, x) = ϑ} ⊢∩ ∥M∥ : ζ̂.

Theorem
Given a principal typing ⟨Γ;µ⟩ there are infinitely many TIC
terms M such that ̂type(M) = µ and Γ = {x : ϑ̂ | ι(M, x) = ϑ}.
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Theorem
Given a principal typing ⟨Γ;µ⟩ there are infinitely many TIC
terms M such that ̂type(M) = µ and Γ = {x : ϑ̂ | ι(M, x) = ϑ}.
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Main properties

Theorem (Subject Reduction)
If ⊢ M : τ and M −→ N, then ⊢ N : τ.

Theorem
If M −→ N, then ∥M∥ −→β ∥N∥.

Theorem
If ∥M∥ −→β P, then there is a TIC term N such that ∥N∥ = P and
either M −→ N or N = M.

Theorem (Characterisation of head normal forms)
A TIC term M has a head normal form iff type(M) , ω.
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Thank you!
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