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λ-Calculus

Definition (λ-Terms)
M, N ∶∶= x ∣M N ∣ λx.M

Definition (β-Reduction)
→β is the contextual closure of (λx.M)N →β M[x ∶= N]

Definition (Strong Normalization)
M is strongly normalizing if each of it’s β-reduction paths is finite.

Example
λy.(λx.y) (y y) is strongly normalizing with the only β-reduction path

λy.(λx.y) (y y)→β λy.y
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Coppo-Dezani Type Assignment System
Definition (Intersection Types)

A, B ∶∶= a ∣ σ → A
σ, τ ∶∶= {A1, . . . , An} where n > 0

Definition (Type Environments)
Γ ∶∶= {x1 ∶ σ1, . . . , xn ∶ σn}

Definition (Coppo-Dezani Type Assignment System)
(x ∶ σ) ∈ Γ A ∈ σ

(Var)Γ ⊢ x ∶ A
Γ, x ∶ σ ⊢M ∶ A (→I)Γ ⊢ λx.M ∶ σ → A

Γ ⊢M ∶ {A1, . . . , An}→ A Γ ⊢ N ∶ A1 . . . Γ ⊢ N ∶ An (→E)Γ ⊢M N ∶ A

Definition (Typability)
M is typable if Γ ⊢M ∶ A for some environment Γ and some type A.
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Strong Normalization Characterization

Theorem ([Barendregt, Dekkers, and Statman 2013, Theorem 17.2.15 (iii)])
M is strongly normalizing iff M is typable.

Remark ([Barendregt, Dekkers, and Statman 2013, Remark 17.2.16 (ii)])

There are many proofs of Theorem 17.2.15 (iii) in the literature, including
[Pottinger 1980]
[Leivant 1986]
[Van Bakel 1992]
[Krivine 1990]
[Ghilezan 1996]
[Amadio and Curien 1998]

As observed by Venneri (private communication in 1996) all but [Amadio
and Curien 1998] contain some bugs.
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Strong Normalization Characterization

Theorem
If M is strongly normalizing, then M is typable.

Proof Sketch.
1 Reduce a given M to normal form N
2 Infer typing for N
3 Use (variant of) subject expansion along the reduction path

Challenges
Suitable subject expansion statement
Suitable reduction strategy
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First Attempt

Hypothesis
If M is strongly normalizing, M →β N, and Γ ⊢ N ∶ A, then Γ ⊢M ∶ A.

Counterexample
Consider (λx.y) (y y)→β y
{y ∶ {a}} ⊢ y ∶ a
{y ∶ {a}} /⊢ (λx.y) (y y) ∶ a
{y ∶ {{a}→ a, a}} ⊢ (λx.y) (y y) ∶ a

↝ The type environment may change
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Second Attempt

Hypothesis
If M is strongly normalizing, M →β N, and Γ ⊢ N ∶ A, then Γ′ ⊢M ∶ A for
some environment Γ′.

Counterexample
Consider λy.(λx.y) (y y)→β λy.y
∅ ⊢ λy.y ∶ {a}→ a
Γ′ /⊢ λy.(λx.y) (y y) ∶ {a}→ a
∅ ⊢ λy.(λx.y) (y y) ∶ {{a}→ a, a}→ a

↝ Not only the environment but the derived type may change
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Third Attempt

Proposition
If M is strongly normalizing, M →β N, and N is typable, then M is
typable.

Proof.
Easy induction on M.

Counterargument
Consider the case M1 M2 →β M1 M3 such that

Γ ⊢M1 M3 ∶ B
▸ Γ ⊢M1 ∶ {A}→ B
▸ Γ ⊢M3 ∶ A

↝ by induction hypothesis Γ′ ⊢M2 ∶ A′
Unclear how to obtain Γ′′ ⊢M1 ∶ {A′}→ B′?
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Fourth Attempt

Proposition
If M →β N by contracting the redex (λx.P)Q, Γ ⊢ N ∶ A, and Γ ⊢ Q ∶ B,
then Γ ⊢M ∶ A.

Counterargument
Consider λy.(λx.y) (y y)→β λy.y

Γ ⊢ λy.y ∶ {a}→ a for any environment Γ
Γ /⊢ λy.(λx.y) (y y) ∶ {a}→ a for any environment Γ

↝ above proposition not applicable
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Satisfactory Approach

[Amadio and Curien 1998, Lemma 3.5.10]
If Γ ⊢M[x ∶= N] ∶ A and Γ ⊢ N ∶ B, then Γ ⊢ (λx.M)N ∶ A.

[Amadio and Curien 1998, Theorem 3.5.17]
If M is strongly normalizing, M →β N by contracting the leftmost redex,
and N is typable, then M is typable.

Proof Sketch.
Induction on (depth(M), size(M)), adjusting derivation above redex.

Example
Consider λy.(λx.y) (y y)→β λy.y

by Lemma 3.5.10 {y ∶ σ} ⊢ (λx.y) (y y) ∶ A
in proof of Theorem 3.5.17 ∅ ⊢ λy.(λx.y) (y y) ∶ σ → A
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Questions

Is the leftmost reduction strategy necessary?
▸ Any perpetual reduction strategy should suffice.
▸ Is there strategy-agnostic approach?

Is strong normalization a suitable invariant for subject expansion?
Strong normalization immaterial for:

▸ Subject expansion at top-level
▸ Subject expansion wrt. I-reduction
▸ Subject expansion wrt. certain cases of K -reduction

Definition (I-Reduction, K -Reduction)
→I is the contextual closure of (λx.M)N →I M[x ∶= N] where x ∈ var(M)
→K is the contextual closure of (λx.M)N →K M where x /∈ var(M)
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Subject Expansion wrt. K -reduction

Observation 1 (Top-level K -expansion)
Consider (λx.M)N →K M such that

x /∈ var(M)
N is in normal form
Γ ⊢M ∶ A

We have Γ′ ⊢ (λx.M)N ∶ A for some Γ′.

Remark
In the above observation

K -expansion into an application
the derived type A is invariant
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Subject Expansion wrt. K -reduction

Observation 2 (Deep K -expansion)
Consider (λx.M)N1 →K (λx.M)N2 such that

N1 →K N2
x /∈ var(M)
N1 is typable
Γ ⊢ (λx.M)N2 ∶ A

We have Γ′ ⊢ (λx.M)N1 ∶ A for some Γ′.

Remark
In the above observation

K -expansion into an application
the derived type A is invariant
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Subject Expansion wrt. K -reduction

Observation 3 (Deep K -expansion)
Consider x M1 . . . Mn N1 →K x M1 . . . Mn N2 such that

N1 →K N2
N1 is typable
Γ ⊢ x M1 . . . Mn N2 ∶ A

We have Γ′ ⊢ x M1 . . . Mn N1 ∶ A, adjusting the type of x.

Remark
In the above observation

K -expansion into an application
the derived type A is invariant
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Subject Expansion wrt. K -reduction

Observation 4 (Deep K -expansion)
Consider (N1 N2)M →K N3 M such that

N1 N2 →K N3 (K -expansion into an application)
Γ′ ⊢ N1 N2 ∶ {A1, . . . , An}→ A (the derived type is invariant)
Γ ⊢ N3 M ∶ A

▸ Γ ⊢ N3 ∶ {A1, . . . , An}→ A
▸ Γ ⊢M ∶ A1, . . . , Γ ⊢M ∶ An

We have Γ′′ ⊢ (N1 N2)M ∶ A, combining Γ and Γ′ into Γ′′.

Remark
In the above observation

K -expansion into an application
the derived type A is invariant
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Subject Expansion wrt. K -reduction

Observation 5 (K -expansion into an abstraction)
Consider λx.M →K λx.N such that

M →K N
Γ ⊢ N ∶ A
Γ′ ⊢M ∶ B

We have Γ′′ ⊢ λx.M ∶ σ → B for suitable σ.

Remark
In the above observation

K -expansion into an abstraction
the derived type may change
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Combining Observations
Definition (K ′-Reduction)

1 If N is in β-normal form and x /∈ var(M), then (λx.M)N →K ′ M.
2 If N1 →K ′ N2, then x M1 . . . Mn N1 →K ′ x M1 . . . Mn N2 where n ≥ 0.
3 If N1 →K ′ N2 and x /∈ var(M), then (λx.M)N1 →K ′ (λx.M)N2.
4 If M1 M2 →K ′ M3, then M1 M2 N →K ′ M3 N.
5 If M →K ′ N, then λx.M →K ′ λx.N.

Lemma (Subject Expansion wrt. →K ′)
If M →K ′ N and Γ ⊢ N ∶ A, then

if M is an application, then Γ′ ⊢M ∶ A for some environment Γ′
if M is an abstraction, then M is typable

Proof.
Induction on the definition of →K ′ , using Observations (1) – (5).

Mechanized using the Coq proof assistant.
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IK ′-Reduction Properties

Definition (IK ′-Reduction)
→IK ′ denotes the union of →I and →K ′ .

Lemma (Dudenhefner and Pautasso 2024, Lemma 5)
If M →β N, then there exists N ′ such that M →IK ′ N ′.

Corollary
If M is strongly normalizing, then there exists N in β-normal form such
that M →∗IK ′ N.

Corollary
If M is strongly normalizing, then M is typable.

18



Further Implications
Theorem
If M →IK ′ N and N is strongly normalizing, then M is strongly
normalizing.
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Perpetual Reduction Strategies

Definition (F∞ [Barendregt 1985, Definition 13.4.1])

F∞(M) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

M if M is in normal form
If M = C[(λx.P)Q] and (λx.P)Q is the leftmost redex, then
⎧⎪⎪
⎨
⎪⎪⎩

C[P[x ∶= Q]] if x ∈ var(P)
C[P] if x /∈ var(P) and Q is in normal form
C[(λx.P)F∞(Q)] otherwise

Lemma
M →∗IK ′ F∞(M)

Corollary (F∞ is perpetual [Barendregt 1985, Theorem 13.4.6])
If F∞(M) is strongly normalizing, then M is strongly normalizing.
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Syntactic Proofs of Strong Normalization

Definition (γ-Reduction [Kfoury and Wells 1995, Definition 3.1])

→γ is the contextual closure of (λx.(λy.M))N →γ λy.(λx.M)N

Lemma (Subject Expansion wrt. →γ)
If M →γ N and Γ ⊢ N ∶ A, then Γ ⊢M ∶ A.

Corollary ([Kfoury and Wells 1995, Theorem 3.11])
If M →∗Iγ P →∗K N such that N is in β-normal form, then M is strongly
normalizing.
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Type Inference in Quantitative Type Systems

Corollary ([Dudenhefner and Pautasso 2024, Theorem 32])
If M is typable in the simply typed λ-calculus, then M is typable in the
uniform non-idempotent type system.

Proof.
1 Reduce M to a normal form N using IK ′γ-reduction.
2 Infer a uniform intersection type for N.
3 Construct a uniform intersection type for M via subject expansion.

Remark
Subject expansion properties for IK ′(γ)-reduction hold in various
(non-idempotent) intersection type systems.
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Closing Remarks
Historically, typability proofs for strongly normalizing terms are inaccurate.
IK ′-reduction is a (sufficiently) large fragment of β-reduction.
IK ′(γ)-reduction enjoys subject expansion in intersection type systems.

▸ No need for leftmost reduction strategies.
▸ Strong normalization is not an explicit requirement.

↝ IK ′(γ)-reduction is suitable to transport typability between type systems.
↝ Any IK ′(γ)-reduction strategy is perpetual.

▸ Weak IK ′(γ)-normalization implies strong β-normalization.

IK ′(γ)-reduction discovered by interaction with a proof assistant.

Lemma (Subject Expansion wrt. →K ′)
If M →K ′ N and Γ ⊢ N ∶ A, then

▸ if M is an application, then Γ′ ⊢M ∶ A for some environment Γ′
▸ if M is an abstraction, then M is typable

Is IK ′(γ)-reduction (in some sense) maximal?

Thank You!
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