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A-Calculus

Definition (A-Terms)
M,N = x|MN|Ax.M

Definition (3-Reduction)
— 3 is the contextual closure of (Ax.M) N -5 M[x := N]

Definition (Strong Normalization)

M is strongly normalizing if each of it's B-reduction paths is finite.

Example

Ay.(Ax.y) (yy) is strongly normalizing with the only B-reduction path
Ay-(Ax.y) (yy) =g Ay.y




Coppo-Dezani Type Assignment System
Definition (Intersection Types)
A, B

g, T

alo—-A
{A1,...,A,} where n>0

Definition (Type Environments)

Fr == {x3:015...,Xp:0n}

Definition (Coppo-Dezani Type Assignment System)
(x:o)el Aco Mx:or-rM:A

Fr-x:A Va) o Miosa OV
r-M:{A;,...,A,} - A Fr-N:A; ... T-N:A, (—E)
r-MN:A -

Definition (Typability)
M is typable if [ - M : A for some environment ' and some type A.




Strong Normalization Characterization

Theorem ([Barendregt, Dekkers, and Statman 2013, Theorem 17.2.15 (iii)])
M is strongly normalizing iff M is typable.

Remark ([Barendregt, Dekkers, and Statman 2013, Remark 17.2.16 (ii)])
There are many proofs of Theorem 17.2.15 (iii) in the literature, including

o [Pottinger 1980]

o [Leivant 1986]

e [Van Bakel 1992]

e [Krivine 1990]

@ [Ghilezan 1996]

@ [Amadio and Curien 1998]

As observed by Venneri (private communication in 1996) all but [Amadio
and Curien 1998] contain some bugs.




Strong Normalization Characterization

Theorem

If M is strongly normalizing, then M is typable.

Proof Sketch.

@ Reduce a given M to normal form N
@ Infer typing for N

© Use (variant of) subject expansion along the reduction path

Challenges

@ Suitable subject expansion statement
@ Suitable reduction strategy




First Attempt

Hypothesis
If M is strongly normalizing, M —-g N, and '~ N : A, then '+ M : A.

v

Counterexample

Consider (Ax.y) (yy) »gy
o {y:{a}}ry:a
o {y:{a}}# (Ax.y)(yy):a
o {y:{{a} »a,a}} - (Ax.y)(yy):a
~ The type environment may change




Second Attempt

Hypothesis

If M is strongly normalizing, M -z N, and '+ N : A, then '+ M : A for
some environment I,

o

Counterexample

Consider Ay.(Ax.y) (yy) =g Ay.y
e grAy.y:{a}—~a
o I Ay.(Ax.y)(yy):{a} »a

e @+ Ay.(Ax.y)(yy):{{a} » a,a} > a
~ Not only the environment but the derived type may change




Third Attempt

Proposition

If M is strongly normalizing, M -3 N, and N is typable, then M is
typable.

Proof.
Easy induction on M.

Counterargument

Consider the case My My -5 My M3 such that
o N+ M1 M3 :B
r-M,:{A} - B
r-M;:A

~ by induction hypothesis ' - M, : A’
Unclear how to obtain "'+ My : {A"} - B'?




Fourth Attempt

Proposition

If M -3 N by contracting the redex (Ax.P)Q, T+N:A, and T+~ Q: B,
then T+ M : A.

o

Counterargument

Consider Ay.(Ax.y) (yy) =g Ay.y
o N+ Ay.y:{a} — a for any environment I
o Nt Ay.(Ax.y) (yy):{a} — a for any environment I’
~ above proposition not applicable




Satisfactory Approach

[Amadio and Curien 1998, Lemma 3.5.10]
fF-M[x:=N]:Aand T+ N:B, then T+ (Ax.M) N : A.

[Amadio and Curien 1998, Theorem 3.5.17]

If M is strongly normalizing, M -3 N by contracting the leftmost redex,
and N is typable, then M is typable.

Proof Sketch.
Induction on (depth(M),size(M)), adjusting derivation above redex.

O]

o

Example

Consider Ay.(Ax.y) (yy) =g Ay.y
@ by Lemma 3.5.10 {y:o}+ (Ax.y) (yy): A
@ in proof of Theorem 3.5.17 @+ Ay.(Ax.y) (yy):0 > A
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Questions

@ Is the leftmost reduction strategy necessary?

» Any perpetual reduction strategy should suffice.
» Is there strategy-agnostic approach?

@ Is strong normalization a suitable invariant for subject expansion?
Strong normalization immaterial for:

» Subject expansion at top-level
» Subject expansion wrt. I-reduction
» Subject expansion wrt. certain cases of K-reduction

Definition (/-Reduction, K-Reduction)

@ — is the contextual closure of (Ax.M) N —; M[x := N] where x € var(M)

@ — is the contextual closure of (Ax.M) N —x M where x ¢ var(M)
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Subject Expansion wrt. K-reduction

Observation 1 (Top-level K-expansion)

Consider (Ax.M) N -, M such that
e x ¢ var(M)
@ N is in normal form
olN-M:A
We have '+ (Ax.M) N : A for some I'".

Remark

In the above observation
@ K-expansion into an application
@ the derived type A is invariant
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Subject Expansion wrt. K-reduction

Observation 2 (Deep K-expansion)
Consider (Ax.M) Ny -k (Ax.M) Ny such that
4 Nl —>K N2
e x ¢ var(M)
o Nj is typable
oM (Ax.-M)N,: A
We have I+ (Ax.M) Ny : A for some I,

Remark

In the above observation
@ K-expansion into an application
@ the derived type A is invariant
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Subject Expansion wrt. K-reduction

Observation 3 (Deep K-expansion)
Consider x My ... M, Ny - x My ... M, Ny such that
o N1 —>K N2
o Nj is typable
o I'l—le...M,,szA
We have '+ x My ... M, Nj : A, adjusting the type of x.

Remark

In the above observation
@ K-expansion into an application
o the derived type A is invariant

14



Subject Expansion wrt. K-reduction

Observation 4 (Deep K-expansion)

Consider (N7 Ny) M -, N3 M such that
e N; Ny >k N3 (K-expansion into an application)
o M+ NyNy:{A;,...,A,} - A (the derived type is invariant)
oF-N;M:A

r'_N3 {A17 LX) n}_)A
Mr-M:A,...,T-M:A,
A

We have I + (N7 Np) M : A, combining I and I’ into I'".

Remark

In the above observation
@ K-expansion into an application
@ the derived type A is invariant
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Subject Expansion wrt. K-reduction

Observation 5 (K-expansion into an abstraction)

Consider Ax.M —x Ax.N such that
e M K N
olN-N:A
olMN-M:B
We have "+ Ax.M : o — B for suitable o.

Remark

In the above observation
@ K-expansion into an abstraction
@ the derived type may change
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Combining Observations
Definition (K’-Reduction)

Q@ If N is in B-normal form and x ¢ var(M), then (Ax.M) N -, M.
Q If Ny - Ny, then x My ... M, Ny -, x My ... M, N> where n> 0.
QIf N1 > K’ N2 and x ¢ var(M), then (AXM) N1 —> K’ (AXM) Nz.

Q If M{ My -y M3, then My My N -y M3 N.

Q If M >k N, then Ax.M -, Ax.N.

Lemma (Subject Expansion wrt. —)

If M >y N and T - N : A, then
e if M is an application, then I' = M : A for some environment I’
e if M is an abstraction, then M s typable

Proof.

Induction on the definition of -/, using Observations (1) — (5).

@ Mechanized using the Coq proof assistant.
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IK’-Reduction Properties

Definition (/K’-Reduction)

— k' denotes the union of —; and — k.

Lemma (Dudenhefner and Pautasso 2024, Lemma 5)
If M —g N, then there exists N’ such that M -y N'.

Corollary

If M is strongly normalizing, then there exists N in 3-normal form such

that M —>;‘K, N.

Corollary
If M is strongly normalizing, then M is typable.
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Further Implications

Theorem

If M -1 N and N is strongly normalizing, then M is strongly
normalizing.
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Perpetual Reduction Strategies

Definition (F. [Barendregt 1985, Definition 13.4.1])

M if M is in normal form
If M=C[(Ax.P) Q] and (Ax.P) Q is the leftmost redex, then
Foo (M) ={ (C[P[x:= Q]] if x e var(P)
{C[P] if x ¢ var(P) and @Q is in normal form
C[(Ax.P) F(Q)] otherwise

Lemma

i Feo (M)

Corollary (F. is perpetual [Barendregt 1985, Theorem 13.4.6])
If Foo (M) is strongly normalizing, then M is strongly normalizing.
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Syntactic Proofs of Strong Normalization

Definition (y-Reduction [Kfoury and Wells 1995, Definition 3.1])
— is the contextual closure of ()\x.(/\y.M)) N —, Ay.(Ax.M) N

Lemma (Subject Expansion wrt. —.)
If M >, NandT'+~N:A, thenT - M:A.

Corollary ([Kfoury and Wells 1995, Theorem 3.11])

If M —>’;7 P -3 N such that N is in B-normal form, then M is strongly
normalizing.
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Type Inference in Quantitative Type Systems

Corollary ([Dudenhefner and Pautasso 2024, Theorem 32])

If M is typable in the simply typed A-calculus, then M is typable in the
uniform non-idempotent type system.

Proof.
© Reduce M to a normal form N using IK'~-reduction.
@ Infer a uniform intersection type for V.
© Construct a uniform intersection type for M via subject expansion. DJ

Remark

Subject expansion properties for IK’(~y)-reduction hold in various
(non-idempotent) intersection type systems.
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Closing Remarks
@ Historically, typability proofs for strongly normalizing terms are inaccurate.
@ IK'-reduction is a (sufficiently) large fragment of B-reduction.
@ IK'(~y)-reduction enjoys subject expansion in intersection type systems.

» No need for leftmost reduction strategies.
» Strong normalization is not an explicit requirement.

~ IK’(~y)-reduction is suitable to transport typability between type systems.
~ Any IK'(~)-reduction strategy is perpetual.
» Weak IK'(~y)-normalization implies strong B-normalization.

@ IK'(~y)-reduction discovered by interaction with a proof assistant.
Lemma (Subject Expansion wrt. — /)
If M >k N and T+~ N : A, then

if M is an application, then T’ = M : A for some environment I’
if M is an abstraction, then M is typable

@ Is IK'(~y)-reduction (in some sense) maximal?
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Thank Youl
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