

From Normalization to Typability via Subject Expansion

Andrej Dudenhefner

TU Dortmund University, Germany

ITRS Invited Talk 2024-07-09, Tallinn, Estonia

λ -Calculus

Definition (λ -Terms)

 $M, N := x | MN | \lambda x.M$

Definition (β -Reduction)

 \rightarrow_{β} is the contextual closure of $(\lambda x.M) \ N \rightarrow_{\beta} M[x := N]$

Definition (Strong Normalization)

M is strongly normalizing if each of it's β -reduction paths is finite.

Example

 $\lambda y.(\lambda x.y)(y y)$ is strongly normalizing with the only β -reduction path $\lambda y.(\lambda x.y)(y y) \rightarrow_{\beta} \lambda y.y$

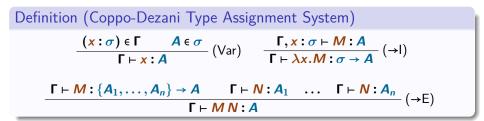
Coppo-Dezani Type Assignment System

Definition (Intersection Types)

$$\begin{array}{rcl} \mathbf{A}, \mathbf{B} & \coloneqq & a \mid \sigma \to \mathbf{A} \\ \sigma, \tau & \coloneqq & \{\mathbf{A}_1, \dots, \mathbf{A}_n\} \text{ where } \mathbf{n} > \mathbf{0} \end{array}$$

Definition (Type Environments)

$$\Gamma ::= \{x_1:\sigma_1,\ldots,x_n:\sigma_n\}$$



Definition (Typability)

M is typable if $\Gamma \vdash M : A$ for some environment Γ and some type **A**.

Strong Normalization Characterization

Theorem ([Barendregt, Dekkers, and Statman 2013, Theorem 17.2.15 (iii)]) *M* is strongly normalizing iff *M* is typable.

Remark ([Barendregt, Dekkers, and Statman 2013, Remark 17.2.16 (ii)])

There are many proofs of Theorem 17.2.15 (iii) in the literature, including

- [Pottinger 1980]
- [Leivant 1986]
- [Van Bakel 1992]
- [Krivine 1990]
- [Ghilezan 1996]
- [Amadio and Curien 1998]

As observed by Venneri (private communication in 1996) all but [Amadio and Curien 1998] contain some bugs.

Strong Normalization Characterization

Theorem

If M is strongly normalizing, then M is typable.

Proof Sketch.

- Reduce a given M to normal form N
- Infer typing for N
- Use (variant of) subject expansion along the reduction path

Challenges

- Suitable subject expansion statement
- Suitable reduction strategy

First Attempt

Hypothesis

If **M** is strongly normalizing, $M \rightarrow_{\beta} N$, and $\Gamma \vdash N : A$, then $\Gamma \vdash M : A$.

Counterexample

Consider $(\lambda x.y) (y y) \rightarrow_{\beta} y$

- $\{y: \{a\}\} \vdash y: a$
- $\{y: \{a\}\} \neq (\lambda x. y) (y y): a$

•
$$\{y: \{\{a\} \rightarrow a, a\}\} \vdash (\lambda x. y) (y y): a$$

→ The type environment may change

Second Attempt

Hypothesis

If *M* is strongly normalizing, $M \rightarrow_{\beta} N$, and $\Gamma \vdash N : A$, then $\Gamma' \vdash M : A$ for some environment Γ' .

Counterexample

Consider $\lambda y.(\lambda x.y)(yy) \rightarrow_{\beta} \lambda y.y$

- $\emptyset \vdash \lambda y.y: \{a\} \rightarrow a$
- $\Gamma' \not\models \lambda y.(\lambda x.y)(yy): \{a\} \rightarrow a$
- $\emptyset \vdash \lambda y.(\lambda x.y)(yy): \{\{a\} \rightarrow a, a\} \rightarrow a$
- → Not only the environment but the derived type may change

Third Attempt

Proposition

If *M* is strongly normalizing, $M \rightarrow_{\beta} N$, and *N* is typable, then *M* is typable.

Proof.

Easy induction on M.

Counterargument

Consider the case $M_1 M_2 \rightarrow_{\beta} M_1 M_3$ such that

•
$$\Gamma \vdash M_1 M_3 : B$$

 $\Gamma \vdash M_1 : \{A\} \rightarrow B$
 $\Gamma \vdash M_3 : A$

→ by induction hypothesis $\Gamma' \vdash M_2 : A'$ Unclear how to obtain $\Gamma'' \vdash M_1 : \{A'\} \rightarrow B'$?

Fourth Attempt

Proposition

If $M \rightarrow_{\beta} N$ by contracting the redex $(\lambda x.P) Q$, $\Gamma \vdash N : A$, and $\Gamma \vdash Q : B$, then $\Gamma \vdash M : A$.

Counterargument

Consider $\lambda y.(\lambda x.y)(yy) \rightarrow_{\beta} \lambda y.y$

- $\Gamma \vdash \lambda y.y: \{a\} \rightarrow a$ for any environment Γ
- $\Gamma \not\models \lambda y.(\lambda x.y)(yy): \{a\} \rightarrow a$ for any environment Γ

→ above proposition not applicable

Satisfactory Approach

[Amadio and Curien 1998, Lemma 3.5.10]

If $\Gamma \vdash M[x := N] : A$ and $\Gamma \vdash N : B$, then $\Gamma \vdash (\lambda x.M) N : A$.

[Amadio and Curien 1998, Theorem 3.5.17]

If *M* is strongly normalizing, $M \rightarrow_{\beta} N$ by contracting the leftmost redex, and *N* is typable, then *M* is typable.

Proof Sketch.

Induction on (depth(M), size(M)), adjusting derivation above redex.

Example

Consider $\lambda y.(\lambda x.y)(yy) \rightarrow_{\beta} \lambda y.y$

- by Lemma 3.5.10 $\{y:\sigma\} \vdash (\lambda x.y)(yy): A$
- in proof of Theorem 3.5.17 $\emptyset \vdash \lambda y.(\lambda x.y)(yy): \sigma \rightarrow A$

Questions

- Is the leftmost reduction strategy necessary?
 - Any perpetual reduction strategy should suffice.
 - Is there strategy-agnostic approach?
- Is strong normalization a *suitable* invariant for subject expansion? Strong normalization immaterial for:
 - Subject expansion at top-level
 - Subject expansion wrt. *I*-reduction
 - Subject expansion wrt. certain cases of K-reduction

Definition (*I*-Reduction, *K*-Reduction)

- \rightarrow_I is the contextual closure of $(\lambda x.M) \ N \rightarrow_I M[x := N]$ where $x \in var(M)$
- $\rightarrow_{\mathcal{K}}$ is the contextual closure of $(\lambda x.M) \land N \rightarrow_{\mathcal{K}} M$ where $x \notin var(M)$

```
Observation 1 (Top-level K-expansion)

Consider (\lambda x.M) N \rightarrow_K M such that

• x \notin var(M)

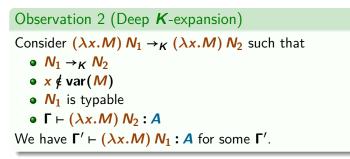
• N is in normal form

• \Gamma \vdash M : A

We have \Gamma' \vdash (\lambda x.M) N : A for some \Gamma'.
```

Remark

- K-expansion into an application
- the derived type A is invariant



Remark

- K-expansion into an application
- the derived type A is invariant

Observation 3 (Deep *K*-expansion) Consider $x M_1 \dots M_n N_1 \rightarrow_K x M_1 \dots M_n N_2$ such that • $N_1 \rightarrow_K N_2$ • N_1 is typable • $\Gamma \vdash x M_1 \dots M_n N_2$: *A* We have $\Gamma' \vdash x M_1 \dots M_n N_1$: *A*, adjusting the type of *x*.

Remark

- K-expansion into an application
- the derived type A is invariant

Observation 4 (Deep K-expansion) Consider $(N_1 N_2) M \rightarrow_K N_3 M$ such that • $N_1 N_2 \rightarrow_K N_3$ (K-expansion into an application) • $\Gamma' \vdash N_1 N_2 : \{A_1, \dots, A_n\} \rightarrow A$ (the derived type is invariant) • $\Gamma \vdash N_3 M : A$ • $\Gamma \vdash N_3 : \{A_1, \dots, A_n\} \rightarrow A$ • $\Gamma \vdash N_3 : \{A_1, \dots, A_n\} \rightarrow A$

We have $\Gamma'' \vdash (N_1 N_2) M : A$, combining Γ and Γ' into Γ'' .

Remark

- K-expansion into an application
- the derived type A is invariant

Observation 5 (*K*-expansion into an abstraction) Consider $\lambda x.M \rightarrow_K \lambda x.N$ such that • $M \rightarrow_K N$ • $\Gamma \vdash N:A$ • $\Gamma' \vdash M:B$ We have $\Gamma'' \vdash \lambda x.M: \sigma \rightarrow B$ for suitable σ .

Remark

- K-expansion into an abstraction
- the derived type may change

Combining Observations

Definition (*K*'-Reduction)

- **1** If **N** is in β -normal form and $x \notin var(M)$, then $(\lambda x.M) N \rightarrow_{K'} M$.
- $If N_1 \rightarrow_{K'} N_2, \text{ then } x M_1 \dots M_n N_1 \rightarrow_{K'} x M_1 \dots M_n N_2 \text{ where } n \ge 0.$
- If $N_1 \rightarrow_{K'} N_2$ and $x \notin var(M)$, then $(\lambda x.M) N_1 \rightarrow_{K'} (\lambda x.M) N_2$.
- $If M_1 M_2 \rightarrow_{K'} M_3, then M_1 M_2 N \rightarrow_{K'} M_3 N.$
- **6** If $M \rightarrow_{K'} N$, then $\lambda x.M \rightarrow_{K'} \lambda x.N$.

Lemma (Subject Expansion wrt. $\rightarrow_{\kappa'}$)

If $M \rightarrow_{K'} N$ and $\Gamma \vdash N : A$, then

- if **M** is an application, then $\Gamma' \vdash M : A$ for some environment Γ'
- if **M** is an abstraction, then **M** is typable

Proof.

Induction on the definition of $\rightarrow_{\mathbf{K}'}$, using Observations (1) – (5).

• Mechanized using the Coq proof assistant.

IK'-Reduction Properties

Definition (IK'-Reduction)

 $\rightarrow_{IK'}$ denotes the union of \rightarrow_I and $\rightarrow_{K'}$.

Lemma (Dudenhefner and Pautasso 2024, Lemma 5)

If $M \rightarrow_{\beta} N$, then there exists N' such that $M \rightarrow_{IK'} N'$.

Corollary

If **M** is strongly normalizing, then there exists **N** in β -normal form such that $\mathbf{M} \rightarrow^*_{\mathbf{IK}'} \mathbf{N}$.

Corollary

If M is strongly normalizing, then M is typable.

Further Implications

Theorem

If $M \rightarrow_{IK'} N$ and N is strongly normalizing, then M is strongly normalizing.

Perpetual Reduction Strategies

Definition (F_{∞} [Barendregt 1985, Definition 13.4.1])

$$F_{\infty}(M) = \begin{cases} M \text{ if } M \text{ is in normal form} \\ \text{If } M = C[(\lambda x.P) Q] \text{ and } (\lambda x.P) Q \text{ is the leftmost redex, then} \\ \begin{pmatrix} C[P[x := Q]] \text{ if } x \in var(P) \\ C[P] \text{ if } x \notin var(P) \text{ and } Q \text{ is in normal form} \\ C[(\lambda x.P) F_{\infty}(Q)] \text{ otherwise} \end{cases}$$

Lemma

 $M \rightarrow^*_{IK'} F_{\infty}(M)$

Corollary (F_{∞} is perpetual [Barendregt 1985, Theorem 13.4.6]) If $F_{\infty}(M)$ is strongly normalizing, then M is strongly normalizing.

Syntactic Proofs of Strong Normalization

Definition (γ -Reduction [Kfoury and Wells 1995, Definition 3.1])

 \rightarrow_{γ} is the contextual closure of $(\lambda x.(\lambda y.M)) N \rightarrow_{\gamma} \lambda y.(\lambda x.M) N$

Lemma (Subject Expansion wrt. \rightarrow_{γ}) If $M \rightarrow_{\gamma} N$ and $\Gamma \vdash N : A$, then $\Gamma \vdash M : A$.

Corollary ([Kfoury and Wells 1995, Theorem 3.11]) If $M \rightarrow_{I\gamma}^* P \rightarrow_K^* N$ such that N is in β -normal form, then M is strongly normalizing. Type Inference in Quantitative Type Systems

Corollary ([Dudenhefner and Pautasso 2024, Theorem 32])

If **M** is typable in the simply typed λ -calculus, then **M** is typable in the uniform non-idempotent type system.

Proof.

- **(**) Reduce M to a normal form N using $IK'\gamma$ -reduction.
- **2** Infer a uniform intersection type for N.
- **③** Construct a uniform intersection type for M via subject expansion.

Remark

Subject expansion properties for $IK'(\gamma)$ -reduction hold in various (non-idempotent) intersection type systems.

Closing Remarks

- Historically, typability proofs for strongly normalizing terms are inaccurate.
- IK'-reduction is a (sufficiently) large fragment of β -reduction.
- $IK'(\gamma)$ -reduction enjoys subject expansion in intersection type systems.
 - No need for leftmost reduction strategies.
 - Strong normalization is not an explicit requirement.
- \sim IK'(γ)-reduction is suitable to transport typability between type systems.
- \rightsquigarrow Any $IK'(\gamma)$ -reduction strategy is perpetual.
 - Weak $IK'(\gamma)$ -normalization implies strong β -normalization.
- $IK'(\gamma)$ -reduction discovered by interaction with a proof assistant.

Lemma (Subject Expansion wrt. $\rightarrow_{\mathbf{K}'}$)

If $\mathbf{M} \rightarrow_{\mathbf{K}'} \mathbf{N}$ and $\mathbf{\Gamma} \vdash \mathbf{N} : \mathbf{A}$, then

- if **M** is an application, then $\Gamma' \vdash M : A$ for some environment Γ'
- ▶ if **M** is an abstraction, then **M** is typable

• Is $IK'(\gamma)$ -reduction (in some sense) maximal?

Closing Remarks

- Historically, typability proofs for strongly normalizing terms are inaccurate.
- IK'-reduction is a (sufficiently) large fragment of β -reduction.
- $IK'(\gamma)$ -reduction enjoys subject expansion in intersection type systems.
 - No need for leftmost reduction strategies.
 - Strong normalization is not an explicit requirement.
- \sim IK'(γ)-reduction is suitable to transport typability between type systems.
- \rightsquigarrow Any $IK'(\gamma)$ -reduction strategy is perpetual.
 - Weak $IK'(\gamma)$ -normalization implies strong β -normalization.
- $IK'(\gamma)$ -reduction discovered by interaction with a proof assistant.

Lemma (Subject Expansion wrt. $\rightarrow_{\mathbf{K}'}$)

If $\mathbf{M} \rightarrow_{\mathbf{K}'} \mathbf{N}$ and $\mathbf{\Gamma} \vdash \mathbf{N} : \mathbf{A}$, then

- if **M** is an application, then $\Gamma' \vdash M : A$ for some environment Γ'
- ▶ if **M** is an abstraction, then **M** is typable

• Is $IK'(\gamma)$ -reduction (in some sense) maximal?

Thank You!