B. Accattoli, G. Guer

Strong Call-by-Value and Multi Types

Published at ICTAC 2023

Beniamino Accattoli! Giulio GuerrieriZ Maico Leberle!

LINRIA Saclay, France

2University of Sussex, UK

Intersection Types and Related Systems (ITRS 2024)
Tallinn, Estonia, 9 July 2024

M. Leberle Strong CbV and Multi Types ITRS 2024

1/21

|
Outline

@ Introduction: Call-by-Value A-Calculi

@ Our Contributions (for Strong CbV)

Strong CbV and Multi Types ITRS 2024 2/21

Introduction: Call-by-Value A\-Calculi

Table of Contents

@ Introduction: Call-by-Value A-Calculi

Strong CbV and Multi Types ITRS 2024 3/21

Introduction: Call-by-Value A\-Calculi

A specific A-calculus among a plethora of A-calculi

The A-calculus is the model of computation underlying
o functional programming languages (Haskell, OCaml, LISP, ...)
o proof assistants (Coq, Isabelle/Hol, Lean, Agda, ...).

B. Accattoli, G. Guer eber| Strong CbV and Multi Types ITRS 2024 4 /21

Introduction: Call-by-Value A\-Calculi

A specific A-calculus among a plethora of A-calculi

The A-calculus is the model of computation underlying
o functional programming languages (Haskell, OCaml, LISP, ...)
o proof assistants (Coq, Isabelle/Hol, Lean, Agda, ...).

Actually, there are many A-calculi, depending on
o the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);
o computational feature the calculus aims to model (e.g., pure, non-determinism);

o the type system (e.g. untyped, simply typed, second order).

B. Accattoli, G. Guer Leberle Strong CbV and Multi Types ITRS 2024 4 /21

Introduction: Call-by-Value A\-Calculi

A specific A-calculus among a plethora of A-calculi

The A-calculus is the model of computation underlying
o functional programming languages (Haskell, OCaml, LISP, ...)
o proof assistants (Coq, Isabelle/Hol, Lean, Agda, ...).

Actually, there are many A-calculi, depending on
o the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);
o computational feature the calculus aims to model (e.g., pure, non-determinism);

o the type system (e.g. untyped, simply typed, second order).

In this talk: pure untyped call-by-value A-calculus (mainly).

B. Accattoli, G. Guer Leberle Strong CbV and Multi Types ITRS 2024 4 /21

Call-by-Value A-Calculi

Call-by-Name vs. Call-by-Value (for dummies)

o Call-by-Name (CbN): pass the argument to the calling function before evaluating it.
o Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

Strong CbV and Multi Types ITRS 2024 5/21

Introduction: Call-by-Value A\-Calculi

Call-by-Name vs. Call-by-Value (for dummies)

o Call-by-Name (CbN): pass the argument to the calling function before evaluating it.
o Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

(Ax.x +x)(2%3)

(2%3)+ (2% 3) (Ax.x + x)6
oy ¢va
6+ (2%3) 646
oY ¢/va
6+6 12
by
12

B. Accattoli, G. Guerri M. Leberle Strong CbV and Multi Types ITRS 2024 5/21

Introduction: Call-by-Value A\-Calculi

Call-by-Name vs. Call-by-Value (for dummies)

o Call-by-Name (CbN): pass the argument to the calling function before evaluating it.

o Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

(Ay.Ax. x)Q (€2 is a diverging program)

y Cbv

AX.X (Ay-2x. x)Q

v CbV

Summing up, CbV is eager, that is,
@ CbV is smarter than CbN when the argument must be duplicated;
@ CbV is sillier than CbN when the argument must be discarded.

B. Accattoli, G. Guerri M. Leberle Strong CbV and Multi Types ITRS 2024 5/21

Call-by-Value A-Calculi

Plotkin's Call-by-Value A-calculus [Plo75]

Terms s, t,us=v|tu Values v = x | Ax.t

CbV reduction (Ax.t)v —p, t{v/x} (restriction to [-rule)

It is closer to real implementation of most programming languages.

The semantics is completely different from standard (CbN) A-calculus.

Leberle Strong CbV and Multi Types ITRS 2024 6 /21

Introduction: Call-by-Value A\-Calculi

Plotkin's Call-by-Value A-calculus [Plo75]

Terms s, t,us=v|tu Values v = x | Ax.t

CbV reduction (Ax.t)v —p, t{v/x} (restriction to [-rule)
It is closer to real implementation of most programming languages.
The semantics is completely different from standard (CbN) A-calculus.

Examples (with duplicator § = Az.zz and identity | = A\z.z):
@ Q:(s(s*)/gv 56—)& 65*)/3‘/

B. Accattoli, G. Guer Leberle Strong CbV and Multi Types ITRS 2024 6 /21

Introduction: Call-by-Value A\-Calculi

Plotkin's Call-by-Value A-calculus [Plo75]

Terms s, t,us=v|tu Values v = x | Ax.t

CbV reduction (Ax.t)v —p, t{v/x} (restriction to [-rule)

It is closer to real implementation of most programming languages.

The semantics is completely different from standard (CbN) A-calculus.

Examples (with duplicator § = Az.zz and identity | = A\z.z):
@ Q=95 —p, 66 =5, 00 —p, ...
@ 5(61) —p, 6(I1) =5, 51 =5, Il =5, I but 5(81) A5, (51)(51).
@ (Ax.6)(xx)d is By-normal but [-divergent!
@ (\x.1)Q is B,-divergent but -normalizing!

3. Accattoli, G. Guerrieri, M. Leberle Strong CbV and Multi Types ITRS 2024 6 /21

Call-by-Value A-Calculi

A symptom that Plotkin's CbV is sick: Contextual equivalence

Def. Terms t,t’ are contextually equivalent if they are observably indistinguishable, i.e.,

for every context C, C(t) =%, v (for some value v) iff C(t') —% v’ (for some value v')

Strong CbV and Multi Types ITRS 2024 7/21

Introduction: Call-by-Value A\-Calculi

A symptom that Plotkin's CbV is sick: Contextual equivalence
Def. Terms t,t’ are contextually equivalent if they are observably indistinguishable, i.e.,
for every context C, C(t) =%, v (for some value v) iff C(t') —% v’ (for some value v')

Consider the terms (with § :== A\z.zz as usual)
w1 = (Ax.0)(xx)d w3 = 0((Ax.0)(xx))

w1 and w3 are fB,-normal but contextually equivalent to §§ (which is §,-divergent)!

B. Accattoli, G. Guer eber| Strong CbV and Multi Types ITRS 2024 7/21

Introduction: Call-by-Value A\-Calculi

A symptom that Plotkin's CbV is sick: Contextual equivalence

Def. Terms t,t’ are contextually equivalent if they are observably indistinguishable, i.e.,
for every context C, C(t) =%, v (for some value v) iff C(t') —% v’ (for some value v')
Consider the terms (with § :== A\z.zz as usual)

w1 = (Ax.0)(xx)d w3 = 0((Ax.0)(xx))

w1 and w3 are fB,-normal but contextually equivalent to §§ (which is §,-divergent)!

The “energy” (i.e. divergence) in w1 and w3 is only potential, in 4 is kinetic!

Why are w1 and w3 stuck? Why cannot we transform their potential energy in kinetic?
It seems that in Plotkin's CbV A-calculus something is missing...

Leberle Strong CbV and Multi Types ITRS 2024 7 /21

Introduction: Call-by-Value A\-Calculi

A second symptom that Plotkin's CbV is sick: denotational semantics (1 of 2)

[Ehr12] defined a non-idempotent intersection type system for Plotkin’s CbV A-calculus.
Linear types L= | M — N Multi types M, N == [Li,...,L,] n>0

Idea: [L,L,L']~ LAL ANL # LAL (commutative, associative, non-idempotent A).
~» Aterm t: [L, L’ L'] can be used once as a data of type L, twice as a data of type L’.

B. Accattoli, G. Guerr A. Leberle Strong CbV and Multi Types ITRS 2024 8/21

Introduction: Call-by-Value A\-Calculi

A second symptom that Plotkin's CbV is sick: denotational semantics (1 of 2)

[Ehr12] defined a non-idempotent intersection type system for Plotkin’s CbV A-calculus.
Linear types L= | M — N Multi types M, N == [Li,...,L,] n>0

Idea: [L,L,L']~ LAL ANL # LAL (commutative, associative, non-idempotent A).
~» Aterm t: [L, L’ L'] can be used once as a data of type L, twice as a data of type L’.

Def: Environment I' = function from variables to multi types s.t. {x | ['(x) # []} is finite.

ax Mx:MEt:N \ MmEv:L 720 I'n)—v:LnI r=t:[M—N] AI—s:M@
MEAx.t: M—oN M4 4Tk v:ly,. .., L] Fr+AFts:N

x:[LFx:L

B. Accattoli, G. Guer Leberle Strong CbV and Multi Types ITRS 2024 8/21

Introduction: Call-by-Value A\-Calculi

A second symptom that Plotkin's CbV is sick: denotational semantics (1 of 2)

[Ehr12] defined a non-idempotent intersection type system for Plotkin’s CbV A-calculus.
Linear types L= | M — N Multi types M, N == [Li,...,L,] n>0

Idea: [L,L,L']~ LAL ANL # LAL (commutative, associative, non-idempotent A).
~» Aterm t: [L, L’ L'] can be used once as a data of type L, twice as a data of type L’.

Def: Environment I' = function from variables to multi types s.t. {x | ['(x) # []} is finite.

ax Mx:MEt:N \ MmEv:L 720 I'n)—v:LnI rt:[M—N] Abs:M

cldbExsb o PN M oNT it ve L, L] F+AFts:N

Rmk: The constructor for multi types (rule !) can be used only by values!
~> In CbV, only values can be duplicated or erased.

B. Accattoli, G. Guer Leberle Strong CbV and Multi Types ITRS 2024 8/21

Introduction: Call-by-Value A\-Calculi

A second symptom that Plotkin's CbV is sick: denotational semantics (2 of 2)

Non-idempotent intersection types define a denotational model: relational semantics

[tz ={(T, M) | T F t: M is derivable} where X C fv(t)

Theorem (Subject reduction and expansion, [Ehrl12]): If t =5, u then [t]z = [u]x-

B. Accattoli, G. Guer eber| Strong CbV and Multi Types ITRS 2024 9 /21

Introduction: Call-by-Value A\-Calculi

A second symptom that Plotkin's CbV is sick: denotational semantics (2 of 2)

Non-idempotent intersection types define a denotational model: relational semantics

[tz ={(T, M) | T F t: M is derivable} where X C fv(t)

Theorem (Subject reduction and expansion, [Ehr12]): If t =5, u then [t]z = [u]x

X-

Theorem (Correctness, [Ehr12]): If [t]z # 0 then t is normalizing for “weak” [,-reduction
("weak” = not reducing under \'s).

B. Accattoli, G. Guerr A. Leberle Strong CbV and Multi Types ITRS 2024 9 /21

Introduction: Call-by-Value A\-Calculi

A second symptom that Plotkin's CbV is sick: denotational semantics (2 of 2)

Non-idempotent intersection types define a denotational model: relational semantics

[tz ={(T, M) | T F t: M is derivable} where X C fv(t)

X-

Theorem (Subject reduction and expansion, [Ehr12]): If t =5, u then [t]z = [u]x

Theorem (Correctness, [Ehr12]): If [t]z # 0 then t is normalizing for “weak” [,-reduction
“weak” = not reducing under \'s).

The converse (completeness) faill
Jwr] =0 = [ws] (and [66] = 0 too!)

but w1 and w3 are S,-normal, while §0 is 5,-divergent!

B. Accattoli, G. Guerri M. Leberle Strong CbV and Multi Types ITRS 2024 9 /21

Introduction: Call-by-Value A\-Calculi

A second symptom that Plotkin's CbV is sick: denotational semantics (2 of 2)

Non-idempotent intersection types define a denotational model: relational semantics

[tz ={(T, M) | T F t: M is derivable} where X C fv(t)

Theorem (Subject reduction and expansion, [Ehr12]): If t =5, u then [t]z = [u]x

X-

Theorem (Correctness, [Ehr12]): If [t]z # 0 then t is normalizing for “weak” [,-reduction
("weak” = not reducing under \'s).

The converse (completeness) faill
Jwr] =0 = [ws] (and [66] = 0 too!)

but w1 and w3 are S,-normal, while §0 is 5,-divergent!

Rmk: Not only in relational semantics but also in other denotational models of CbV!

B. Accattoli, G. Guerr A. Leberle Strong CbV and Multi Types ITRS 2024 9 /21

Call-by-Value A-Calculi

Summing up: a mismatch between syntax and semantics

In Plotkin's CbV A-calculus there is a mismatch between syntax and semantics.

There are terms, such as
w1 = (Ax.0)(xx)d w3 = 0((Ax.0)(xx))

that are (3,-normal but their semantics is the same as §6, which is 3,-divergent!

o semantics: context equivalence, solvability, denotational models, ...

Strong CbV and Multi Types ITRS 2024

10 / 21

Introduction: Call-by-Value A\-Calculi

Summing up: a mismatch between syntax and semantics

In Plotkin's CbV A-calculus there is a mismatch between syntax and semantics.

There are terms, such as
w1 = (Ax.0)(xx)d w3 = 0((Ax.0)(xx))

that are (3,-normal but their semantics is the same as §6, which is 3,-divergent!

o semantics: context equivalence, solvability, denotational models, ...

Somehow, in Plotkin's CbV A-calculus, S,-reduction is “not enough”.
o Can we extend [, so that w; and w3 are divergent?

o But we want to keep a CbV discipline:

(Ax.1)(60) is B,-divergent (but J-normalizing)

B. Accattoli, G. Guer Leberle Strong CbV and Multi Types ITRS 2024

10 / 21

Introduction: Call-by-Value A\-Calculi

First alternative CbV A-calculus: Fireball calculus [PaoRon99, Greler02]

Terms s,tu=v|st Values v = x | Ax.t
Inert terms /= x|if Fireballs fu=1i|v
Reduction (Ax.t)f —p, t{f/x} (call-by-extended-value)

B. Accattoli, G. Guer Leberle Strong CbV and Multi Types ITRS 2024 11 /21

Introduction: Call-by-Value A\-Calculi

First alternative CbV A-calculus: Fireball calculus [PaoRon99, Greler02]

Terms s,tu=v|st Values v = x | Ax.t
Inert terms /= x|if Fireballs fu=1i|v
Reduction (Ax.t)f —p, t{f/x} (call-by-extended-value)

The fireball calculus (FC) extends f,-reduction: w; and ws are 8,-normal but

w1 = ()\X.(;)(XX)(; — B¢ 00 — B¢) B e w3 = 5(()\X§)(XX)) — B¢) — B¢ 00 B e

B. Accattoli, G. Guer Leberle Strong CbV and Multi Types ITRS 2024 11 /21

Introduction: Call-by-Value A\-Calculi

First alternative CbV A-calculus: Fireball calculus [PaoRon99, Greler02]

Terms s,tu=v|st Values v = x | Ax.t
Inert terms /= x|if Fireballs fu=1i|v
Reduction (Ax.t)f —p, t{f/x} (call-by-extended-value)

The fireball calculus (FC) extends f,-reduction: w; and ws are 8,-normal but
w1 = ()\X.(;)(XX)(; — B¢ 00 — B¢) B e w3 = 5(()\X5)(XX)) — B¢ 00 — B¢ 00 B e
Problem 1: No confluence: (Ax.(Az.z)(xx))d

Problem 2: No subject reduction with multi types [Ehr12]: (Ay.yy)(xx) — g, (xx)(xx).
No subject expansion with multi types [Ehr12]: (Ay.z)(xx) —3, z.

B. Accattoli, G. Guerrieri, M. Leberle Strong CbV and Multi Types ITRS 2024 11 /21

Introduction: Call-by-Value A\-Calculi

First alternative CbV A-calculus: Fireball calculus [PaoRon99, Greler02]

Terms s,tu=v|st Values v = x | Ax.t
Inert terms /= x|if Fireballs fu=1i|v
Reduction (Ax.t)f —p, t{f/x} (call-by-extended-value)

The fireball calculus (FC) extends f,-reduction: w; and ws are 8,-normal but

w1 = ()\X.(;)(XX)(; — B¢ 00 — B¢) B e w3 = 5(()\X5)(XX)) — B¢) — B¢ 00 B e

Problem 1: No confluence: (Ax.(Az.z)(xx))d

Problem 2: No subject reduction with multi types [Ehr12]: (Ay.yy)(xx) — g, (xx)(xx).
No subject expansion with multi types [Ehr12]: (Ay.z)(xx) —3, z.

Solution to Problems 1-2: Just modify the syntax of the FC (a bit tricky, omitted).

B. Accattoli, G. Guerrieri, M. Leberle Strong CbV and Multi Types ITRS 2024 11 /21

Introduction: Call-by-Value A\-Calculi

Second alternative CbV A-calculus: Value Substitution Calculus [AccPaol?]

Terms: s, t == v | ts | t[s/x] Values: v = x | Ax.t

Substitution contexts: L := [t1/x1]...[ta/Xn]

Reductions: (Ax.t)Ls —n, t[s/x]L tlvL/x] —e t{v/x}L

B. Accattoli, G. Guerr A. Leberle Strong CbV and Multi Types ITRS 2024 12 /21

Introduction: Call-by-Value A\-Calculi

Second alternative CbV A-calculus: Value Substitution Calculus [AccPaol?]

Terms: s, t == v | ts | t[s/x] Values: v = x | Ax.t

Substitution contexts: L := [t1/x1]...[ta/Xn]

Reductions: (Ax.t)Ls —n, t[s/x]L tlvL/x] —e t{v/x}L

@ p.-reduction can be simulated in the Value Substitution Calculus (VSC).
(Ax.t)v —m tlv/x] —e t{v/x}
@ VSC extends (3,-reduction: w; and ws are B,-normal but

w1 = (Ax.0)(xx)0 —m O[xx/x]0 —m (22)[0/z][xx/x] —e 00 [xx/x] — ...
w3 = 0((Ax.0)(xx)) —m 0(0[xx/x]) —=m (22)[0[xx/x]/z] —e 6O [xx/x] — ...

B. Accattoli, G. Guerrieri, M. Leberle Strong CbV and Multi Types ITRS 2024 12 /21

Introduction: Call-by-Value A\-Calculi

Second alternative CbV A-calculus: Value Substitution Calculus [AccPaol?]

Terms: s, t == v | ts | t[s/x] Values: v = x | Ax.t

Substitution contexts: L := [t1/x1]...[ta/Xn]

Reductions: (Ax.t)Ls —n, t[s/x]L tlvL/x] —e t{v/x}L

@ p.-reduction can be simulated in the Value Substitution Calculus (VSC).
(Ax.t)v —m tlv/x] —e t{v/x}
@ VSC extends (3,-reduction: w; and ws are B,-normal but

w1 = (Ax.0)(xx)0 —m O[xx/x]0 —m (22)[0/z][xx/x] —e 00 [xx/x] — ...
w3 = 0((Ax.0)(xx)) —m 0(0[xx/x]) —=m (22)[0[xx/x]/z] —e 6O [xx/x] — ...

Theorem (Subject reduction and expansion, [AccGuel8]): If t —vsc u then [t]z = [u]x-
Mx:MEt:N AFs: M
M+ A tfs/x]: N

B. Accattoli, G. Guerrieri, M. Leberle Strong CbV and Multi Types ITRS 2024 12 /21

Introduction: Call-by-Value A\-Calculi

Termination equivalence: weak but not strong

Consider weak reduction (i.e. not firing redexes under \'s): perfect match!
Prop (Diamond) Both VSC-reduction and f¢-reduction are diamond.
Thm (Termination equivalence [AccGuel6]): t is VSC-normalizing iff t is S¢-normalizing.

Thm (Correctness & completeness [AccGuel8]): t is VSC-normalizing iff [t]z # 0.

B. Accattoli, G. Guer Leberle Strong CbV and Multi Types ITRS 2024 13 /21

Introduction: Call-by-Value A\-Calculi

Termination equivalence: weak but not strong

Consider weak reduction (i.e. not firing redexes under \'s): perfect match!
Prop (Diamond) Both VSC-reduction and f¢-reduction are diamond.
Thm (Termination equivalence [AccGuel6]): t is VSC-normalizing iff t is S¢-normalizing.

Thm (Correctness & completeness [AccGuel8]): t is VSC-normalizing iff [t]z # 0.

With strong reduction (i.e. firing redexes everywhere): A mess! (and the diamond fails)
Problem 1: VSC-reduction and S¢-reduction have different notions of termination.

Problem 2: Characterization of VSC-normalization or B¢-normalization with multi types?

B. Accattoli, G. Guer Leberle Strong CbV and Multi Types ITRS 2024 13 /21

Our Contributions (for

Table of Contents

@ Our Contributions (for Strong CbV)

Strong CbV and Multi Types ITRS 2024 14 /21

Our Contributions (for Strong

The external strategy
In CbN, the leftmost-outermost strategy (LO) fires the leftmost-outermost [3-redex.

Thm (Normalization [CurFey58]): If t is S-normalizing then LO from t terminates.

Strong CbV and Multi Types ITRS 2024 15 /21

Our Contributions (for Strong CbV)

The external strategy
In CbN, the leftmost-outermost strategy (LO) fires the leftmost-outermost [3-redex.

Thm (Normalization [CurFey58]): If t is S-normalizing then LO from t terminates.

What is the analog for Strong CbV? Things are a bit trickier!

Def: The external strategy (roughly) fires a redex everywhere, except under \'s in a
irrelevant position for normalization (e.g. an applied X or a A on the right of another \).

Rmk: The external strategy — is not deterministic but diamond.

Ex: If | = Az.z, = cannot fire the redex Il in (Ax.(/I))v. But Ax.00 —x Ax.06 —x ...

B. Accattoli, G. Guer Leberle Strong CbV and Multi Types ITRS 2024 15 /21

Our Contributions (for Strong CbV)

The external strategy
In CbN, the leftmost-outermost strategy (LO) fires the leftmost-outermost [3-redex.

Thm (Normalization [CurFey58]): If t is S-normalizing then LO from t terminates.

What is the analog for Strong CbV? Things are a bit trickier!

Def: The external strategy (roughly) fires a redex everywhere, except under \'s in a
irrelevant position for normalization (e.g. an applied X or a A on the right of another \).

Rmk: The external strategy — is not deterministic but diamond.

Ex: If | = Az.z, = cannot fire the redex Il in (Ax.(/I))v. But Ax.00 —x Ax.06 —x ...

Rmk: The external strategy behaves differently in VSC and FC.

External in FC: t = (Ax.1)(y(A2.06)) —xp, | (which is normal)
External in VSC: t —xvsc 1[y(Az.88)/x] —xvsc Ily(Az.08)/x] —xvsc - -+

B. Accattoli, G. Guerrieri, M. Leberle Strong CbV and Multi Types ITRS 2024 15 / 21

Our Contributions (for Strong

More about the external strategy

Question: Why is the external strategy important?
[AccConSac?1,BieChaDra20] proved that it is a reasonable cost model for Strong CbV.

Leberle Strong CbV and Multi Types ITRS 2024 16 / 21

Our Contributions (for Strong CbV)

More about the external strategy

Question: Why is the external strategy important?
[AccConSac?1,BieChaDra20] proved that it is a reasonable cost model for Strong CbV.

Def: In VSC, the external reduction —,ysc is formally defined as follows:
Rigid terms: ra=x|rt|r[t/x]
Rigid contexts: R = rX | Rt| R[r/x] | r[R/X]
External contexts: X o= () | XX | t[R/x] | X[r/x] | R

—xvsc is the closure under external contexts of weak reduction in VSC.

Rmk: in VSC, t is normal for —,ysc iff t is normal for —vsc.

B. Accattoli, G. Guer Leberle Strong CbV and Multi Types ITRS 2024 16 / 21

Our Contributions (for Strong

Multi types for Strong CbV

Goal: We want to prove that the external strategy is normalizing for Strong CbV.

Questions: For which Strong CbV? And how to prove it?

Strong CbV and Multi Types ITRS 2024 17 /21

Our Contributions (for Strong CbV)

Multi types for Strong CbV

Goal: We want to prove that the external strategy is normalizing for Strong CbV.

Questions: For which Strong CbV? And how to prove it?

Idea: Let's use multi types [Ehr12]! But it's trickier!
Ex: Ax.d4 is external divergent but typable with [] (use the rule ! with no premises).

Ex: x Ax.d¢ is external divergent but typable with x : [[] —0 M] F x Ax.6d : M, for all M.

B. Accattoli, G. Guerr A. Leberle Strong CbV and Multi Types ITRS 2024 17 /21

Our Contributions (for Strong CbV)

Multi types for Strong CbV

Goal: We want to prove that the external strategy is normalizing for Strong CbV.

Questions: For which Strong CbV? And how to prove it?

Idea: Let's use multi types [Ehr12]! But it's trickier!

Ex: Ax.d4 is external divergent but typable with [] (use the rule ! with no premises).
Ex: x Ax.d¢ is external divergent but typable with x : [[] —0 M] F x Ax.6d : M, for all M.
Idea: Let's forbid [] on the right of - and on the left of arrow types in the environment

~> no [] in the positive positions (right shrinking types);
~> dually, no [] in the negative positions (left shrinking types).

B. Accattoli, G. Guerr A. Leberle Strong CbV and Multi Types ITRS 2024 17 /21

Our Contributions (for Strong CbV)

Shrinking types, formally

We take the same type system as [Ehr12], we just restrict the types.

Right multi shrink. M" == [Af,..., A}] (n > 1) Right linear shrink. L" := x| M’ — M"
Left multi shrink. M‘ == [A%,... A5l (n>0) Left linear shrink. L* := % | M" — M"

B. Accattoli, G. Guerr A. Leberle Strong CbV and Multi Types ITRS 2024 18 /21

Our Contributions (for Strong CbV)

Shrinking types, formally

We take the same type system as [Ehr12], we just restrict the types.

Right multi shrink. M" == [Af,..., A}] (n > 1) Right linear shrink. L" := x| M’ — M"
Left multi shrink. M‘ == [A%,... A5l (n>0) Left linear shrink. L* := % | M" — M"

Def: An environment xi : My, ..., x, : M, is left shrinking if all M;'s are left shrinking.
A typing (I'; M) is shrinking if T is left shrinking and M is right shrinking.

B. Accattoli, G. Guerri M. Leberle Strong CbV and Multi Types ITRS 2024 18 /21

Our Contributions (for Strong CbV)

The key results 1: Shrinking typability = external normalization

Thm (Quantitative subject reduction) Let M>T + t: M a derivation where (I', M) is
shrinking. If t —.vsc t’ then there is a derivation ' >T F ¢ : M with || > |IT'].

B. Accattoli, G. Guer eber| Strong CbV and Multi Types ITRS 2024 19 /21

Our Contributions (for Strong CbV)

The key results 1: Shrinking typability = external normalization

Thm (Quantitative subject reduction) Let M>T + t: M a derivation where (I', M) is
shrinking. If t —.vsc t’ then there is a derivation ' >T F ¢ : M with || > |IT'].

Rmk: Dropping shrinkingness, the quantitative aspect is false! Ax.00 —.vsc Ax.(zz)[d/2]
but both terms are only typable with [] using the ! rule with no premises ~» || = |[’].

B. Accattoli, G. Guerr A. Leberle

Strong CbV and Multi Types ITRS 2024 19 /21

Our Contributions (for Strong CbV)

The key results 1: Shrinking typability = external normalization

Thm (Quantitative subject reduction) Let M>T + t: M a derivation where (I', M) is
shrinking. If t —.vsc t’ then there is a derivation ' >T F ¢ : M with || > |IT'].

Rmk: Dropping shrinkingness, the quantitative aspect is false! Ax.00 —.vsc Ax.(zz)[d/2]
but both terms are only typable with [] using the ! rule with no premises ~» || = |[’].

Rmk: Replacing —«vsc with —vsc, quantitativity fails! /(Ax./I) s I(Ax.z[l/z]) and
!
Fy:ll

—_—
n=FrAy:i—I, , but any M'>F I(Ax.z[l/2]) : [] is s.t. || > |1].

Fyy (1] — [F/\><<”3[]©
EI(x)]

Thm (Shrinking correctness) Let M >T - ¢t : M a derivation where (I, M) is shrinking.
Then t —}ysc u where u is VSC-normal.

B. Accattoli, G. Guerrieri, M. Leberle Strong CbV and Multi Types ITRS 2024 19 /21

Our Contributions (for Strong CbV)

The key results 2: External normalization = shrinking typability

Lemma: Every VSC-normal form is typable with a shrinking typing.

Thm (Shrinking completeness) Let t —},sc u where u is VSC-normal. Then
MeT = t: M a derivation where [and M are shrinking.

B. Accattoli, G. Guer

Strong CbV and Multi Types ITRS 2024 20 /21

Our Contributions (for Strong CbV)

The key results 2: External normalization = shrinking typability

Lemma: Every VSC-normal form is typable with a shrinking typing.

Thm (Shrinking completeness) Let t —},sc u where u is VSC-normal. Then
MeT = t: M a derivation where [and M are shrinking.

Cor: If t is VSC-normalizing then t is VSC-normalizing with the external strategy.

B. Accattoli, G. Guer

Strong CbV and Multi Types ITRS 2024 20 /21

Our Contributions (for Strong CbV)

The key results 2: External normalization = shrinking typability

Lemma: Every VSC-normal form is typable with a shrinking typing.

Thm (Shrinking completeness) Let t —},sc u where u is VSC-normal. Then
MeT = t: M a derivation where [and M are shrinking.

Cor: If t is VSC-normalizing then t is VSC-normalizing with the external strategy.

Shrinking types define a denotational model: shrinking relational semantics:

[e]3" = {(T, M) shrinking | T - t : M is derivable} where X C fu(t)

which is adequate: [t]$" # @ iff t is VSC-normalizing.

X

B. Accattoli, G. Guerr A. Leberle Strong CbV and Multi Types ITRS 2024

20 / 21

Our Contributions (for Strong CbV)

The key results 2: External normalization = shrinking typability

Lemma: Every VSC-normal form is typable with a shrinking typing.

Thm (Shrinking completeness) Let t —},sc u where u is VSC-normal. Then
MeT = t: M a derivation where [and M are shrinking.

Cor: If t is VSC-normalizing then t is VSC-normalizing with the external strategy.

Shrinking types define a denotational model: shrinking relational semantics:
[e]3" = {(T, M) shrinking | T - t : M is derivable} where X C fu(t)

which is adequate: [t]$" # @ iff t is VSC-normalizing.

X

Rmk: Shrinking completeness fails in FC, see counterexample on p. 15: (Ax./)(y(Az.09)).
~» The shrinking relational semantics suggests that VSC is the “right” Strong CbV.

B. Accattoli, G. Guerri M. Leberle Strong CbV and Multi Types ITRS 2024 20 /21

ur Contributiol

Thank you!

Questions?

b 4
{

o i

Strong CbV and Multi Types ITRS 2024 21 /21

	Introduction: Call-by-Value lambda-Calculi
	Our Contributions (for Strong CbV)

