Strong Call-by-Value and Multi Types

Published at ICTAC 2023

Beniamino Accattoli¹ Giulio Guerrieri² Maico Leberle¹

1 INRIA Saclay, France

²University of Sussex, UK

Intersection Types and Related Systems (ITRS 2024) Tallinn, Estonia, 9 July 2024

¹ [Introduction: Call-by-Value](#page-2-0) λ-Calculi

2 [Our Contributions \(for Strong CbV\)](#page-33-0)

Table of Contents

¹ [Introduction: Call-by-Value](#page-2-0) λ-Calculi

2 [Our Contributions \(for Strong CbV\)](#page-33-0)

A specific λ -calculus among a plethora of λ -calculi

The λ -calculus is the model of computation underlying

- **o** functional programming languages (Haskell, OCaml, LISP, ...)
- proof assistants (Coq, Isabelle/Hol, Lean, Agda, . . .).

A specific λ -calculus among a plethora of λ -calculi

The λ -calculus is the model of computation underlying

- **o** functional programming languages (Haskell, OCaml, LISP, ...)
- \bullet proof assistants (Coq, Isabelle/Hol, Lean, Agda, ...).

Actually, there are many λ -calculi, depending on

- the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);
- **o** computational feature the calculus aims to model (e.g., pure, non-determinism);
- the type system (e.g. untyped, simply typed, second order).

A specific λ -calculus among a plethora of λ -calculi

The λ -calculus is the model of computation underlying

- **o** functional programming languages (Haskell, OCaml, LISP, ...)
- \bullet proof assistants (Coq, Isabelle/Hol, Lean, Agda, ...).

Actually, there are many λ -calculi, depending on

- the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);
- \bullet computational feature the calculus aims to model (e.g., pure, non-determinism);
- the type system (e.g. untyped, simply typed, second order).

In this talk: pure untyped call-by-value λ -calculus (mainly).

[Introduction: Call-by-Value](#page-2-0) λ-Calculi

Call-by-Name vs. Call-by-Value (for dummies)

- Call-by-Name (CbN): pass the argument to the calling function before evaluating it.
- Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

Call-by-Name vs. Call-by-Value (for dummies)

- **•** Call-by-Name (CbN): pass the argument to the calling function before evaluating it.
- Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

Call-by-Name vs. Call-by-Value (for dummies)

- Call-by-Name (CbN): pass the argument to the calling function before evaluating it.
- Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

Summing up, CbV is eager, that is,

- **1 CbV** is smarter than CbN when the argument must be duplicated;
- **2** CbV is sillier than CbN when the argument must be discarded.

Plotkin's Call-by-Value λ-calculus [Plo75]

Terms $s, t, u ::= v \mid tu$ Values $v ::= x \mid \lambda x. t$ CbV reduction $(\lambda x.t)v \rightarrow_{\beta_v} t\{v/x\}$ (restriction to β -rule)

It is closer to real implementation of most programming languages. The semantics is completely different from standard (CbN) λ -calculus.

Plotkin's Call-by-Value λ-calculus [Plo75]

Terms
$$
s, t, u := v \mid tu
$$

\nValues $v := x \mid \lambda x.t$

\nCbV reduction $(\lambda x.t)v \rightarrow_{\beta_v} t\{v/x\}$

\n(restriction to β -rule)

It is closer to real implementation of most programming languages. The semantics is completely different from standard (CbN) λ -calculus.

Examples (with duplicator $\delta = \lambda z.zz$ and identity $I = \lambda z. z$): $\textbf{D} \;\; \Omega = \delta \delta \rightarrow_{\beta_\mathsf{v}} \delta \delta \rightarrow_{\beta_\mathsf{v}} \delta \delta \rightarrow_{\beta_\mathsf{v}} \ldots$

Plotkin's Call-by-Value λ-calculus [Plo75]

Terms $s, t, u ::= v \mid tu$ Values $v ::= x \mid \lambda x. t$ CbV reduction $(\lambda x.t)v \rightarrow_{\beta_v} t\{v/x\}$ (restriction to β -rule)

It is closer to real implementation of most programming languages. The semantics is completely different from standard (CbN) λ -calculus.

Examples (with duplicator $\delta = \lambda z.zz$ and identity $I = \lambda z. z$):

- $\textbf{D} \;\; \Omega = \delta \delta \rightarrow_{\beta_\mathsf{v}} \delta \delta \rightarrow_{\beta_\mathsf{v}} \delta \delta \rightarrow_{\beta_\mathsf{v}} \ldots$
- $\delta(\delta I) \to_{\beta_v} \delta(H) \to_{\beta_v} \delta I \to_{\beta_v} H \to_{\beta_v} I$ but $\delta(\delta I) \not\to_{\beta_v} (\delta I)(\delta I)$.
- **3** $(\lambda x.\delta)(xx)\delta$ is β_{v} -normal but β -divergent!
- Θ (λx.1)Ω is β _v-divergent but β -normalizing!

A symptom that Plotkin's CbV is sick: Contextual equivalence

Def. Terms t, t' are contextually equivalent if they are observably indistinguishable, i.e., for every context C, C $\langle t\rangle\to^*_{\beta_{\sf v}}$ $\sf v$ (for some value $\sf v)$ iff C $\langle t'\rangle\to^*_{\beta_{\sf v}}$ $\sf v'$ (for some value $\sf v'$)

A symptom that Plotkin's CbV is sick: Contextual equivalence

Def. Terms t, t' are contextually equivalent if they are observably indistinguishable, i.e., for every context C, C $\langle t\rangle\to^*_{\beta_{\sf v}}$ $\sf v$ (for some value $\sf v)$ iff C $\langle t'\rangle\to^*_{\beta_{\sf v}}$ $\sf v'$ (for some value $\sf v'$)

Consider the terms (with $\delta := \lambda z \cdot zz$ as usual)

 $\omega_1 := (\lambda x.\delta)(xx)\delta \qquad \omega_3 := \delta((\lambda x.\delta)(xx))$

 $ω_1$ and $ω_3$ are $β_ν$ -normal but contextually equivalent to $δδ$ (which is $β_ν$ -divergent)!

A symptom that Plotkin's CbV is sick: Contextual equivalence

Def. Terms t, t' are contextually equivalent if they are observably indistinguishable, i.e., for every context C, C $\langle t\rangle\to^*_{\beta_{\sf v}}$ $\sf v$ (for some value $\sf v)$ iff C $\langle t'\rangle\to^*_{\beta_{\sf v}}$ $\sf v'$ (for some value $\sf v'$)

Consider the terms (with $\delta := \lambda z \cdot zz$ as usual)

 $\omega_1 := (\lambda x.\delta)(xx)\delta \qquad \omega_3 := \delta((\lambda x.\delta)(xx))$

 $ω_1$ and $ω_3$ are $β_ν$ -normal but contextually equivalent to $δδ$ (which is $β_ν$ -divergent)!

The "energy" (i.e. divergence) in ω_1 and ω_3 is only potential, in $\delta\delta$ is kinetic!

Why are ω_1 and ω_3 stuck? Why cannot we transform their potential energy in kinetic? It seems that in Plotkin's CbV λ -calculus something is missing...

[Ehr12] defined a non-idempotent intersection type system for Plotkin's CbV λ -calculus.

Linear types $L ::= * | M \rightarrow N$ Multi types $M, N ::= [L_1, ..., L_n]$ $n > 0$

Idea: $[L, L', L'] \approx L \wedge L' \wedge L' \neq L \wedge L'$ (commutative, associative, non-idempotent \wedge). \rightsquigarrow A term $t: [L,L',L']$ can be used once as a data of type L , twice as a data of type $L'.$

[Ehr12] defined a non-idempotent intersection type system for Plotkin's CbV λ -calculus.

Linear types $L ::= * | M \rightarrow N$ Multi types $M, N ::= [L_1, ..., L_n]$ $n > 0$

Idea: $[L, L', L'] \approx L \wedge L' \wedge L' \neq L \wedge L'$ (commutative, associative, non-idempotent \wedge). \rightsquigarrow A term $t: [L,L',L']$ can be used once as a data of type L , twice as a data of type $L'.$

Def: Environment $\Gamma =$ function from variables to multi types s.t. $\{x \mid \Gamma(x) \neq \Gamma\}$ is finite.

$$
\frac{\Gamma_1 + \nu \cdot L}{x \cdot [L] + x \cdot L} \text{ax} \quad \frac{\Gamma_1 + \nu \cdot M + t \cdot N}{\Gamma_1 + \lambda x \cdot t \cdot M \to 0} \lambda \quad \frac{\Gamma_1 + \nu \cdot L_1}{\Gamma_1 + \dots + \Gamma_n + \nu \cdot [L_1, \dots, L_n]} \quad \frac{\Gamma_1 + \nu \cdot L_n}{\Gamma_1 + \lambda x \cdot t \cdot M} \text{a}
$$

[Ehr12] defined a non-idempotent intersection type system for Plotkin's CbV λ -calculus.

Linear types $L ::= * | M \rightarrow N$ Multi types $M, N ::= [L_1, ..., L_n]$ $n > 0$

Idea: $[L, L', L'] \approx L \wedge L' \wedge L' \neq L \wedge L'$ (commutative, associative, non-idempotent \wedge). \rightsquigarrow A term $t: [L,L',L']$ can be used once as a data of type L , twice as a data of type $L'.$

Def: Environment $\Gamma =$ function from variables to multi types s.t. $\{x \mid \Gamma(x) \neq \Gamma\}$ is finite.

$$
\frac{\Gamma_1 + \nu \cdot L}{\Gamma_1 + \nu \cdot L} \text{ as } \frac{\Gamma_1 \times M + t \cdot N}{\Gamma_1 + \lambda \cdot L \cdot M \to 0} \lambda = \frac{\Gamma_1 + \nu \cdot L_1 \stackrel{n \geq 0}{\longrightarrow} \Gamma_n + \nu \cdot L_n}{\Gamma_1 + \dots + \Gamma_n + \nu \cdot [L_1, \dots, L_n]} = \frac{\Gamma + t \cdot [M \to N] \Delta + s \cdot M}{\Gamma_1 + \Delta + ts \cdot N} \text{ or } \frac{\Gamma_1 + \nu \cdot L_1 \stackrel{n \geq 0}{\longrightarrow} \Gamma_1 + \nu \cdot L_1
$$

Rmk: The constructor for multi types (rule !) can be used only by values! \rightarrow In CbV, only values can be duplicated or erased.

Non-idempotent intersection types define a denotational model: relational semantics

 $[[t]]_{\vec{x}} = \{(\Gamma, M) | \Gamma \vdash t : M \text{ is derivable}\}\$ where $\vec{x} \subseteq \text{fv}(t)$

Theorem (Subject reduction and expansion, [Ehr12]): If $t \rightarrow_{\beta_v} u$ then $\|t\|_{\vec{x}} = \|u\|_{\vec{x}}$.

Non-idempotent intersection types define a denotational model: relational semantics

 $[[t]]_{\vec{x}} = \{(\Gamma, M) | \Gamma \vdash t : M \text{ is derivable}\}\$ where $\vec{x} \subseteq \text{fv}(t)$

Theorem (Subject reduction and expansion, [Ehr12]): If $t \to \beta$, u then $\|t\|_{\mathcal{S}} = \|u\|_{\mathcal{S}}$.

Theorem (Correctness, $[Ehr12]$): If $\llbracket t \rrbracket_{\vec{x}} \neq \emptyset$ then t is normalizing for "weak" $\beta_{\rm v}$ -reduction ("weak" = not reducing under λ 's).

Non-idempotent intersection types define a denotational model: relational semantics

 $[[t]]_{\vec{x}} = \{(\Gamma, M) | \Gamma \vdash t : M \text{ is derivable}\}\$ where $\vec{x} \subseteq \text{fv}(t)$

Theorem (Subject reduction and expansion, [Ehr12]): If $t \to \beta$, u then $\|t\|_{\mathcal{S}} = \|u\|_{\mathcal{S}}$.

Theorem (Correctness, $[Ehr12]$): If $||t||_{\vec{x}} \neq \emptyset$ then t is normalizing for "weak" β_{ν} -reduction ("weak" = not reducing under λ 's).

The converse (completeness) fail!

 $\llbracket \omega_1 \rrbracket = \emptyset = \llbracket \omega_3 \rrbracket$ (and $\llbracket \delta \delta \rrbracket = \emptyset$ too!)

but ω_1 and ω_3 are β_{ν} -normal, while $\delta\delta$ is β_{ν} -divergent!

Non-idempotent intersection types define a denotational model: relational semantics

 $[[t]]_{\vec{x}} = \{(\Gamma, M) | \Gamma \vdash t : M \text{ is derivable}\}\$ where $\vec{x} \subseteq \text{fv}(t)$

Theorem (Subject reduction and expansion, [Ehr12]): If $t \to_{\beta_v} u$ then $\llbracket t \rrbracket_{\vec{x}} = \llbracket u \rrbracket_{\vec{x}}$.

Theorem (Correctness, $[Ehr12]$): If $||t||_{\vec{x}} \neq \emptyset$ then t is normalizing for "weak" β_{ν} -reduction ("weak" = not reducing under λ 's).

The converse (completeness) fail!

 $\llbracket \omega_1 \rrbracket = \emptyset = \llbracket \omega_3 \rrbracket$ (and $\llbracket \delta \delta \rrbracket = \emptyset$ too!)

but ω_1 and ω_3 are β_{ν} -normal, while $\delta\delta$ is β_{ν} -divergent!

Rmk: Not only in relational semantics but also in other denotational models of CbV!

Summing up: a mismatch between syntax and semantics

In Plotkin's CbV λ -calculus there is a mismatch between syntax and semantics.

There are terms, such as

 $\omega_1 := (\lambda x.\delta)(xx)\delta \qquad \omega_3 := \delta((\lambda x.\delta)(xx))$

that are β_{ν} -normal but their semantics is the same as $\delta\delta$, which is β_{ν} -divergent! **o** semantics: context equivalence, solvability, denotational models, ...

Summing up: a mismatch between syntax and semantics

In Plotkin's CbV λ -calculus there is a mismatch between syntax and semantics.

There are terms, such as

$$
\omega_1 := (\lambda x.\delta)(xx)\delta \qquad \omega_3 := \delta((\lambda x.\delta)(xx))
$$

that are β_{ν} -normal but their semantics is the same as $\delta\delta$, which is β_{ν} -divergent! **o** semantics: context equivalence, solvability, denotational models, ...

Somehow, in Plotkin's CbV λ -calculus, β_{ν} -reduction is "not enough".

- Can we extend β_{ν} so that ω_1 and ω_3 are divergent?
- But we want to keep a CbV discipline: ۰

 $(\lambda x.1)(\delta \delta)$ is β _v-divergent (but β -normalizing)

Reduction $(\lambda x.t)f \rightarrow_{\beta_{\epsilon}} t\{f/x\}$

Terms $s, t ::= v | st$ Values $v ::= x | \lambda x. t$ Inert terms $i := x \mid if$ Fireballs $f := i \mid v$ (call-by-extended-value)

Terms $s, t ::= v | st$ Values $v ::= x | \lambda x. t$ Inert terms $i ::= x \mid if$ Fireballs $f ::= i \mid v$ Reduction $(\lambda x.t)f \rightarrow_{\beta_{\epsilon}} t\{f/x\}$ (call-by-extended-value) The fireball calculus (FC) extends β_{ν} -reduction: ω_1 and ω_3 are β_{ν} -normal but $\omega_1 = (\lambda x.\delta)(xx)\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \ldots \quad \omega_3 = \delta((\lambda x.\delta)(xx)) \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \ldots$

Terms $s, t ::= v | st$ Values $v ::= x | \lambda x. t$ Inert terms $i ::= x \mid if$ Fireballs $f ::= i \mid v$ Reduction $(\lambda x.t) f \rightarrow_{\beta} tf\{f/x\}$ (call-by-extended-value) The fireball calculus (FC) extends β_{ν} -reduction: ω_1 and ω_3 are β_{ν} -normal but $\omega_1 = (\lambda x.\delta)(xx)\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \ldots \quad \omega_3 = \delta((\lambda x.\delta)(xx)) \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \ldots$ Problem 1: No confluence: $(\lambda x.(\lambda z. z)(xx))\delta$

Problem 2: No subject reduction with multi types $[Ehr12]$: $(\lambda y.yy)(xx) \rightarrow_{\beta_f} (xx)(xx)$. No subject expansion with multi types $[\textsf{Ehr12}]: (\lambda y.z)(xx) \rightarrow_{\beta_f} z$.

Terms $s, t ::= v | st$ Values $v ::= x | \lambda x. t$ Inert terms $i ::= x \mid if$ Fireballs $f ::= i \mid v$ Reduction $(\lambda x.t) f \rightarrow_{\beta} tf\{f/x\}$ (call-by-extended-value) The fireball calculus (FC) extends $\beta_{\rm v}$ -reduction: ω_1 and ω_3 are $\beta_{\rm v}$ -normal but $\omega_1 = (\lambda x.\delta)(xx)\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \ldots \quad \omega_3 = \delta((\lambda x.\delta)(xx)) \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \ldots$ Problem 1: No confluence: $(\lambda x.(\lambda z. z)(xx))\delta$

Problem 2: No subject reduction with multi types $[Ehr12]$: $(\lambda y.yy)(xx) \rightarrow_{\beta_f} (xx)(xx)$. No subject expansion with multi types $[\textsf{Ehr12}]: (\lambda y.z)(xx) \rightarrow_{\beta_f} z$.

Solution to Problems 1–2: Just modify the syntax of the FC (a bit tricky, omitted).

Second alternative CbV λ-calculus: Value Substitution Calculus [AccPao12]

Terms: $s, t ::= v | ts | t[s/x]$ Values: $v ::= x | \lambda x. t$ Substitution contexts: $L ::= [t_1/x_1] \dots [t_n/x_n]$ Reductions: $(\lambda x.t) Ls \rightarrow_m t[s/x]L$ $t[vL/x] \rightarrow_e t\{v/x\}L$

Second alternative CbV λ-calculus: Value Substitution Calculus [AccPao12]

Terms:
$$
s, t := v \mid ts \mid t[s/x]
$$

\nValues: $v := x \mid \lambda x.t$

\nSubstitution contexts: $L := [t_1/x_1] \dots [t_n/x_n]$

\nReductions: $(\lambda x.t) Ls \rightarrow_m t[s/x]L$

\n $t[vL/x] \rightarrow_e t\{v/x\}L$

 \bullet $\beta_{\rm v}$ -reduction can be simulated in the Value Substitution Calculus (VSC).

$$
(\lambda x.t)v \rightarrow_m t[v/x] \rightarrow_e t\{v/x\}
$$

2 VSC extends β_v -reduction: ω_1 and ω_3 are β_v -normal but

 $\omega_1 = (\lambda x.\delta)(xx)\delta \rightarrow_m \delta[xx/x]\delta \rightarrow_m (zz)[\delta/z][xx/x] \rightarrow_e \delta\delta[xx/x] \rightarrow \ldots$ $\omega_3 = \delta((\lambda x.\delta)(xx)) \rightarrow_m \delta(\delta[xx/x]) \rightarrow_m (zz)[\delta[xx/x]/z] \rightarrow_e \delta(\delta[xx/x] \rightarrow ...$ Second alternative CbV λ-calculus: Value Substitution Calculus [AccPao12]

Terms:
$$
s, t := v \mid ts \mid t[s/x]
$$

\nValues: $v := x \mid \lambda x.t$

\nSubstitution contexts: $L := [t_1/x_1] \dots [t_n/x_n]$

\nReductions: $(\lambda x.t) Ls \rightarrow_m t[s/x]L$

\n $t[vL/x] \rightarrow_e t\{v/x\}L$

 θ β _v-reduction can be simulated in the Value Substitution Calculus (VSC).

$$
(\lambda x.t)v \rightarrow_m t[v/x] \rightarrow_e t\{v/x\}
$$

2 VSC extends β_v -reduction: ω_1 and ω_3 are β_v -normal but

$$
\omega_1 = (\lambda x.\delta)(xx)\delta \rightarrow_m \delta[xx/x]\delta \rightarrow_m (zz)[\delta/z][xx/x] \rightarrow_e \delta\delta[xx/x] \rightarrow ...
$$

$$
\omega_3 = \delta((\lambda x.\delta)(xx)) \rightarrow_m \delta(\delta[xx/x]) \rightarrow_m (zz)[\delta[xx/x]/z] \rightarrow_e \delta\delta[xx/x] \rightarrow ...
$$

Theorem (Subject reduction and expansion, $[AccGu18]$): If $t \rightarrow y_{SC} u$ then $||t||_{\vec{x}} = ||u||_{\vec{x}}$. $\frac{\Gamma, x : M \vdash t : N \quad \Delta \vdash s : M}{\Gamma + \Delta \vdash t[s/x] : N} ES$

Termination equivalence: weak but not strong

- Consider weak reduction (i.e. not firing redexes under λ 's): perfect match!
- Prop (Diamond) Both VSC-reduction and β_f -reduction are diamond.
- Thm (Termination equivalence $[AccGue16]$): t is VSC-normalizing iff t is β_f -normalizing.
- Thm (Correctness & completeness [AccGue18]): t is VSC-normalizing iff $[[t]]_{\vec{x}} \neq \emptyset$.

Termination equivalence: weak but not strong

- Consider weak reduction (i.e. not firing redexes under λ 's): perfect match!
- Prop (Diamond) Both VSC-reduction and β_f -reduction are diamond.
- Thm (Termination equivalence $[AccGue16]$): t is VSC-normalizing iff t is β_f -normalizing.
- Thm (Correctness & completeness [AccGue18]): t is VSC-normalizing iff $[[t]]_{\vec{x}} \neq \emptyset$.

With strong reduction (i.e. firing redexes everywhere): A mess! (and the diamond fails) Problem 1: *VSC*-reduction and β_f -reduction have different notions of termination. Problem 2: Characterization of VSC-normalization or β_f -normalization with multi types?

Table of Contents

1 [Introduction: Call-by-Value](#page-2-0) λ -Calculi

2 [Our Contributions \(for Strong CbV\)](#page-33-0)

The external strategy

In CbN, the leftmost-outermost strategy (LO) fires the leftmost-outermost β -redex.

Thm (Normalization $[CurFey58]$): If t is β -normalizing then LO from t terminates.

The external strategy

In CbN, the leftmost-outermost strategy (LO) fires the leftmost-outermost β -redex.

Thm (Normalization $\left[CurFev58\right]$): If t is β -normalizing then LO from t terminates.

What is the analog for Strong CbV? Things are a bit trickier!

Def: The external strategy (roughly) fires a redex everywhere, except under λ 's in a irrelevant position for normalization (e.g. an applied λ or a λ on the right of another λ).

Rmk: The external strategy \rightarrow _x is not deterministic but diamond.

Ex: If $I = \lambda z \cdot z$, \rightarrow_x cannot fire the redex II in $(\lambda x \cdot (II))v$. But $\lambda x \cdot \delta \delta \rightarrow_x \lambda x \cdot \delta \delta \rightarrow_x \ldots$

The external strategy

In CbN, the leftmost-outermost strategy (LO) fires the leftmost-outermost β -redex.

Thm (Normalization $\left[CurFev58\right]$): If t is β -normalizing then LO from t terminates.

What is the analog for Strong CbV? Things are a bit trickier!

Def: The external strategy (roughly) fires a redex everywhere, except under λ 's in a irrelevant position for normalization (e.g. an applied λ or a λ on the right of another λ).

Rmk: The external strategy \rightarrow _x is not deterministic but diamond.

Ex: If $I = \lambda z \cdot z$, \rightarrow_x cannot fire the redex II in $(\lambda x \cdot (II))v$. But $\lambda x \cdot \delta \delta \rightarrow_x \lambda x \cdot \delta \delta \rightarrow_x \ldots$

Rmk: The external strategy behaves differently in VSC and FC.

External in FC: $t = (\lambda x.1)(y(\lambda z. \delta \delta)) \rightarrow_{x\beta_f} I$ (which is normal) External in VSC: $t \to_{xVSC} I[y(\lambda z.\delta \delta)/x] \to_{xVSC}^* I[y(\lambda z.\delta \delta)/x] \to_{xVSC} \cdots$

More about the external strategy

Question: Why is the external strategy important?

[AccConSac21, BieChaDra20] proved that it is a reasonable cost model for Strong CbV.

More about the external strategy

Question: Why is the external strategy important?

[AccConSac21,BieChaDra20] proved that it is a reasonable cost model for Strong CbV.

Def: In VSC, the external reduction \rightarrow_{xVSC} is formally defined as follows:

 \rightarrow _{xVSC} is the closure under external contexts of weak reduction in VSC.

Rmk: in VSC, t is normal for \rightarrow_{xVSC} iff t is normal for \rightarrow_{VSC} .

Multi types for Strong CbV

Goal: We want to prove that the external strategy is normalizing for Strong CbV.

Questions: For which Strong CbV? And how to prove it?

Multi types for Strong CbV

Goal: We want to prove that the external strategy is normalizing for Strong CbV.

Questions: For which Strong CbV? And how to prove it?

Idea: Let's use multi types [Ehr12]! But it's trickier!

Ex: $\lambda x.\delta \delta$ is external divergent but typable with \iint (use the rule ! with no premises).

Ex: $x \lambda x. \delta \delta$ is external divergent but typable with $x : [[] \rightarrow M] \vdash x \lambda x. \delta \delta : M$, for all M.

Multi types for Strong CbV

Goal: We want to prove that the external strategy is normalizing for Strong CbV.

Questions: For which Strong CbV? And how to prove it?

Idea: Let's use multi types [Ehr12]! But it's trickier!

Ex: $\lambda x.\delta\delta$ is external divergent but typable with ι (use the rule ! with no premises).

Ex: $x \lambda x. \delta \delta$ is external divergent but typable with $x : [[] \rightarrow M] \vdash x \lambda x. \delta \delta : M$, for all M.

Idea: Let's forbid [] on the right of ⊢ and on the left of arrow types in the environment \rightarrow no [] in the positive positions (right shrinking types); \rightarrow dually, no [] in the negative positions (left shrinking types).

Shrinking types, formally

We take the same type system as [Ehr12], we just restrict the types.

Right multi shrink. $M' ::= [A'_1, \ldots, A'_r]$ Γ_n'] $(n\geq 1)$ $\;$ Right linear shrink. $\; L' ::= * \mid M^\ell \multimap M'$ Left multi shrink. $M^{\ell} := [A_1^{\ell}, \ldots, A_n^{\ell}]$ $\binom{\ell}{n}$ $(n\geq 0)$ but the linear shrink. $L^\ell \Coloneqq * \mid M' \multimap M^\ell$

Shrinking types, formally

We take the same type system as $[Ehr12]$, we just restrict the types.

Right multi shrink. $M' ::= [A'_1, \ldots, A'_r]$ Γ_n'] $(n\geq 1)$ $\;$ Right linear shrink. $\; L' ::= * \mid M^\ell \multimap M'$ Left multi shrink. $M^{\ell} := [A_1^{\ell}, \ldots, A_n^{\ell}]$ $\binom{\ell}{n}$ $(n\geq 0)$ but the linear shrink. $L^\ell \Coloneqq * \mid M' \multimap M^\ell$

Def: An environment $x_1 : M_1, \ldots, x_n : M_n$ is left shrinking if all M_i 's are left shrinking. A typing (Γ; M) is shrinking if Γ is left shrinking and M is right shrinking.

The key results 1: Shrinking typability \Rightarrow external normalization

Thm (Quantitative subject reduction) Let $\Pi \triangleright \Gamma \vdash t : M$ a derivation where (Γ, M) is shrinking. If $t\to_{\mathsf{xVSC}}t'$ then there is a derivation $\Pi'\triangleright\Gamma\vdash t'$: M with $|\Pi|>|\Pi'|.$

The key results 1: Shrinking typability \Rightarrow external normalization

Thm (Quantitative subject reduction) Let Π ▷ Γ ⊢ t : M a derivation where (Γ, M) is shrinking. If $t\to_{\mathsf{xVSC}}t'$ then there is a derivation $\Pi'\triangleright\Gamma\vdash t'$: M with $|\Pi|>|\Pi'|.$

Rmk: Dropping shrinkingness, the quantitative aspect is false! $\lambda x.\delta \delta \rightarrow_{x\vee s\zeta} \lambda x.(zz)[\delta/z]$ but both terms are only typable with [] using the ! rule with no premises $\leadsto |\Pi|=|\Pi'|$.

The key results 1: Shrinking typability \Rightarrow external normalization

Thm (Quantitative subject reduction) Let $\Pi \triangleright \Gamma \vdash t : M$ a derivation where (Γ, M) is shrinking. If $t\to_{\mathsf{xVSC}}t'$ then there is a derivation $\Pi'\triangleright\Gamma\vdash t'$: M with $|\Pi|>|\Pi'|.$

Rmk: Dropping shrinkingness, the quantitative aspect is false! $\lambda x.\delta \delta \rightarrow_{x\vee sC} \lambda x.(zz)[\delta/z]$ but both terms are only typable with [] using the ! rule with no premises $\leadsto |\Pi|=|\Pi'|$.

 R mk: Replacing \to_{xVSC} with \to_{VSC} , quantitativity fails! $I(\lambda \chi.II) \stackrel{\not\to_{\mathsf{xVSC}}}{\to} I(\lambda \chi.z[I/Z])$ and $\mathsf{\Pi} =$ $\frac{\overline{F} \times : \prod^{1}}{\overline{F} \lambda y.y : \left[\prod_{i=0}^{n} \frac{1}{i}\right]} \lambda$
 $\frac{\overline{F} \lambda y.y : \left[\prod_{i=0}^{n} \frac{1}{i}\right]}{\overline{F} \left[\lambda x.H\right] : \left[\prod_{i=0}^{n} \frac{1}{i}\right]}$ but any $\Pi' \triangleright \vdash I(\lambda x.z[I/z]):[]$ is s.t. $|\Pi'| \geq |\Pi|$.

Thm (Shrinking correctness) Let $\Pi \triangleright \Gamma \vdash t : M$ a derivation where (Γ, M) is shrinking. Then $t \rightarrow_{xVSC}^{*} u$ where u is VSC-normal.

Lemma: Every VSC-normal form is typable with a shrinking typing.

Thm (Shrinking completeness) Let $t \rightarrow^{*}_{xVSC} u$ where u is VSC-normal. Then $\Pi \triangleright \Gamma \vdash t : M$ a derivation where Γ and M are shrinking.

Lemma: Every VSC-normal form is typable with a shrinking typing.

Thm (Shrinking completeness) Let $t \rightarrow^{*}_{xVSC} u$ where u is VSC-normal. Then $\Pi \triangleright \Gamma \vdash t : M$ a derivation where Γ and M are shrinking.

Cor: If t is VSC-normalizing then t is VSC-normalizing with the external strategy.

Lemma: Every VSC-normal form is typable with a shrinking typing.

Thm (Shrinking completeness) Let $t \rightarrow^{*}_{xVSC} u$ where u is VSC-normal. Then Π \triangleright Γ \vdash t : M a derivation where Γ and M are shrinking.

Cor: If t is VSC-normalizing then t is VSC-normalizing with the external strategy.

Shrinking types define a denotational model: shrinking relational semantics: $\llbracket t \rrbracket_{\vec{x}}^{\text{shr}} = \{ (\Gamma, M) \text{ shrinking} \mid \Gamma \vdash t : M \text{ is derivable} \}$ where $\vec{x} \subseteq \text{fv}(t)$ which is adequate: $[\![t]\!]_{\vec{x}}^{\text{shr}} \neq \emptyset$ iff t is VSC-normalizing.

Lemma: Every VSC-normal form is typable with a shrinking typing.

Thm (Shrinking completeness) Let $t \rightarrow^{*}_{xVSC} u$ where u is VSC-normal. Then $\Pi \triangleright \Gamma \vdash t : M$ a derivation where Γ and M are shrinking.

Cor: If t is VSC-normalizing then t is VSC-normalizing with the external strategy.

Shrinking types define a denotational model: shrinking relational semantics: $\llbracket t \rrbracket_{\vec{x}}^{\text{shr}} = \{ (\Gamma, M) \text{ shrinking} \mid \Gamma \vdash t : M \text{ is derivable} \}$ where $\vec{x} \subseteq \text{fv}(t)$ which is adequate: $[\![t]\!]_{\vec{x}}^{\text{shr}} \neq \emptyset$ iff t is VSC-normalizing.

Rmk: Shrinking completeness fails in FC, see counterexample on p. 15: $(\lambda x.1)(y(\lambda z. \delta \delta))$. \rightarrow The shrinking relational semantics suggests that VSC is the "right" Strong CbV.

Thank you!

Questions?

