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Introduction: Call-by-Value λ-Calculi

A specific λ-calculus among a plethora of λ-calculi

The λ-calculus is the model of computation underlying

functional programming languages (Haskell, OCaml, LISP, . . . )

proof assistants (Coq, Isabelle/Hol, Lean, Agda, . . . ).

Actually, there are many λ-calculi, depending on

the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);

computational feature the calculus aims to model (e.g., pure, non-determinism);

the type system (e.g. untyped, simply typed, second order).

In this talk: pure untyped call-by-value λ-calculus (mainly).
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Introduction: Call-by-Value λ-Calculi

Call-by-Name vs. Call-by-Value (for dummies)

Call-by-Name (CbN): pass the argument to the calling function before evaluating it.

Call-by-Value (CbV): pass the argument to the calling function after evaluating it.
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(Ω is a diverging program)

Summing up, CbV is eager, that is,

1 CbV is smarter than CbN when the argument must be duplicated;

2 CbV is sillier than CbN when the argument must be discarded.
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Introduction: Call-by-Value λ-Calculi

Plotkin’s Call-by-Value λ-calculus [Plo75]

Terms s, t, u ::= v | tu Values v ::= x | λx .t
CbV reduction (λx .t)v →βv t{v/x} (restriction to β-rule)

It is closer to real implementation of most programming languages.

The semantics is completely different from standard (CbN) λ-calculus.

Examples (with duplicator δ = λz .zz and identity I = λz .z):

1 Ω = δδ →βv δδ →βv δδ →βv . . .

2 δ(δI ) →βv δ(II ) →βv δI →βv II →βv I but δ(δI ) ̸→βv (δI )(δI ).

3 (λx .δ)(xx)δ is βv -normal but β-divergent!

4 (λx .I )Ω is βv -divergent but β-normalizing!
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Introduction: Call-by-Value λ-Calculi

A symptom that Plotkin’s CbV is sick: Contextual equivalence

Def. Terms t, t′ are contextually equivalent if they are observably indistinguishable, i.e.,

for every context C, C⟨t⟩ →∗
βv

v (for some value v) iff C⟨t′⟩ →∗
βv

v ′ (for some value v ′)

Consider the terms (with δ := λz .zz as usual)

ω1 := (λx .δ)(xx)δ ω3 := δ((λx .δ)(xx))

ω1 and ω3 are βv -normal but contextually equivalent to δδ (which is βv -divergent)!

The “energy” (i.e. divergence) in ω1 and ω3 is only potential, in δδ is kinetic!

Why are ω1 and ω3 stuck? Why cannot we transform their potential energy in kinetic?
It seems that in Plotkin’s CbV λ-calculus something is missing...
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Introduction: Call-by-Value λ-Calculi

A second symptom that Plotkin’s CbV is sick: denotational semantics (1 of 2)

[Ehr12] defined a non-idempotent intersection type system for Plotkin’s CbV λ-calculus.

Linear types L ::= ∗ | M ⊸ N Multi types M,N ::= [L1, . . . , Ln] n ≥ 0

Idea: [L, L′, L′] ≈ L ∧ L′ ∧ L′ ̸= L ∧ L′ (commutative, associative, non-idempotent ∧).
; A term t : [L, L′, L′] can be used once as a data of type L, twice as a data of type L′.

Def: Environment Γ = function from variables to multi types s.t. {x | Γ(x) ̸= [ ]} is finite.

ax
x : [L] ⊢ x : L

Γ, x : M ⊢ t : N
λ

Γ ⊢ λx.t : M⊸N

Γ1 ⊢ v : L1
n≥0. . . Γn ⊢ v : Ln

!
Γ1 + · · · + Γn ⊢ v : [L1, . . . , Ln]

Γ ⊢ t : [M⊸N] ∆ ⊢ s : M
@

Γ + ∆ ⊢ ts : N

Rmk: The constructor for multi types (rule !) can be used only by values!
; In CbV, only values can be duplicated or erased.
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Introduction: Call-by-Value λ-Calculi

A second symptom that Plotkin’s CbV is sick: denotational semantics (2 of 2)

Non-idempotent intersection types define a denotational model: relational semantics

JtKx⃗ = {(Γ,M) | Γ ⊢ t : M is derivable} where x⃗ ⊆ fv(t)

Theorem (Subject reduction and expansion, [Ehr12]): If t →βv u then JtKx⃗ = JuKx⃗ .

Theorem (Correctness, [Ehr12]): If JtKx⃗ ̸= ∅ then t is normalizing for “weak” βv -reduction
(“weak” = not reducing under λ’s).

The converse (completeness) fail!

Jω1K = ∅ = Jω3K (and JδδK = ∅ too!)

but ω1 and ω3 are βv -normal, while δδ is βv -divergent!

Rmk: Not only in relational semantics but also in other denotational models of CbV!
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Introduction: Call-by-Value λ-Calculi

Summing up: a mismatch between syntax and semantics

In Plotkin’s CbV λ-calculus there is a mismatch between syntax and semantics.

There are terms, such as

ω1 := (λx .δ)(xx)δ ω3 := δ((λx .δ)(xx))

that are βv -normal but their semantics is the same as δδ, which is βv -divergent!

semantics: context equivalence, solvability, denotational models, . . .

Somehow, in Plotkin’s CbV λ-calculus, βv -reduction is “not enough”.

Can we extend βv so that ω1 and ω3 are divergent?

But we want to keep a CbV discipline:

(λx .I )(δδ) is βv -divergent (but β-normalizing)
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Introduction: Call-by-Value λ-Calculi

First alternative CbV λ-calculus: Fireball calculus [PaoRon99, GreLer02]

Terms s, t ::= v | s t Values v ::= x | λx .t
Inert terms i ::= x | i f Fireballs f ::= i | v

Reduction (λx .t)f →βf t{f /x} (call-by-extended-value)

The fireball calculus (FC) extends βv -reduction: ω1 and ω3 are βv -normal but

ω1 = (λx .δ)(xx)δ →βf δδ →βf δδ →βf . . . ω3 = δ((λx .δ)(xx)) →βf δδ →βf δδ →βf . . .

Problem 1: No confluence: (λx .(λz .z)(xx))δ

Problem 2: No subject reduction with multi types [Ehr12]: (λy .yy)(xx) →βf (xx)(xx).
No subject expansion with multi types [Ehr12]: (λy .z)(xx) →βf z .

Solution to Problems 1–2: Just modify the syntax of the FC (a bit tricky, omitted).
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Introduction: Call-by-Value λ-Calculi

Second alternative CbV λ-calculus: Value Substitution Calculus [AccPao12]

Terms: s, t ::= v | ts | t[s/x ] Values: v ::= x | λx .t
Substitution contexts: L ::= [t1/x1] . . . [tn/xn]

Reductions: (λx .t)Ls →m t[s/x ]L t[vL/x ] →e t{v/x}L

1 βv -reduction can be simulated in the Value Substitution Calculus (VSC).

(λx .t)v →m t[v/x ] →e t{v/x}

2 VSC extends βv -reduction: ω1 and ω3 are βv -normal but

ω1 = (λx .δ)(xx)δ →m δ[xx/x ]δ →m (zz)[δ/z][xx/x ] →e δδ [xx/x ] → . . .

ω3 = δ((λx .δ)(xx)) →m δ(δ[xx/x ]) →m (zz)[δ[xx/x ]/z] →e δδ [xx/x ] → . . .

Theorem (Subject reduction and expansion, [AccGue18]): If t →VSC u then JtKx⃗ = JuKx⃗ .
Γ, x : M ⊢ t : N ∆ ⊢ s : M

ES
Γ + ∆ ⊢ t[s/x] : N
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Introduction: Call-by-Value λ-Calculi

Termination equivalence: weak but not strong

Consider weak reduction (i.e. not firing redexes under λ’s): perfect match!

Prop (Diamond) Both VSC -reduction and βf -reduction are diamond.

Thm (Termination equivalence [AccGue16]): t is VSC -normalizing iff t is βf -normalizing.

Thm (Correctness & completeness [AccGue18]): t is VSC -normalizing iff JtKx⃗ ̸= ∅.

With strong reduction (i.e. firing redexes everywhere): A mess! (and the diamond fails)

Problem 1: VSC -reduction and βf -reduction have different notions of termination.

Problem 2: Characterization of VSC -normalization or βf -normalization with multi types?
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Our Contributions (for Strong CbV)

The external strategy

In CbN, the leftmost-outermost strategy (LO) fires the leftmost-outermost β-redex.

Thm (Normalization [CurFey58]): If t is β-normalizing then LO from t terminates.

What is the analog for Strong CbV? Things are a bit trickier!

Def: The external strategy (roughly) fires a redex everywhere, except under λ’s in a
irrelevant position for normalization (e.g. an applied λ or a λ on the right of another λ).

Rmk: The external strategy →x is not deterministic but diamond.

Ex: If I = λz .z , →x cannot fire the redex II in (λx .(II ))v . But λx .δδ →x λx .δδ →x . . .

Rmk: The external strategy behaves differently in VSC and FC.

External in FC: t = (λx .I )(y(λz .δδ)) →xβf I (which is normal)

External in VSC: t →xVSC I [y(λz .δδ)/x ] →∗
xVSC I [y(λz .δδ)/x ] →xVSC · · ·
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Our Contributions (for Strong CbV)

More about the external strategy

Question: Why is the external strategy important?

[AccConSac21,BieChaDra20] proved that it is a reasonable cost model for Strong CbV.

Def: In VSC, the external reduction →xVSC is formally defined as follows:

Rigid terms: r ::= x | r t | r [t/x ]
Rigid contexts: R ::= rX | Rt | R[r/x ] | r [R/x ]

External contexts: X ::= ⟨·⟩ | λx .X | t[R/x ] | X [r/x ] | R

→xVSC is the closure under external contexts of weak reduction in VSC.

Rmk: in VSC, t is normal for →xVSC iff t is normal for →VSC .

B. Accattoli, G. Guerrieri, M. Leberle Strong CbV and Multi Types ITRS 2024 16 / 21



Our Contributions (for Strong CbV)

More about the external strategy

Question: Why is the external strategy important?

[AccConSac21,BieChaDra20] proved that it is a reasonable cost model for Strong CbV.

Def: In VSC, the external reduction →xVSC is formally defined as follows:

Rigid terms: r ::= x | r t | r [t/x ]
Rigid contexts: R ::= rX | Rt | R[r/x ] | r [R/x ]

External contexts: X ::= ⟨·⟩ | λx .X | t[R/x ] | X [r/x ] | R

→xVSC is the closure under external contexts of weak reduction in VSC.

Rmk: in VSC, t is normal for →xVSC iff t is normal for →VSC .

B. Accattoli, G. Guerrieri, M. Leberle Strong CbV and Multi Types ITRS 2024 16 / 21



Our Contributions (for Strong CbV)

Multi types for Strong CbV

Goal: We want to prove that the external strategy is normalizing for Strong CbV.

Questions: For which Strong CbV? And how to prove it?

Idea: Let’s use multi types [Ehr12]! But it’s trickier!

Ex: λx .δδ is external divergent but typable with [ ] (use the rule ! with no premises).

Ex: x λx .δδ is external divergent but typable with x : [[ ] ⊸ M] ⊢ x λx .δδ : M, for all M.

Idea: Let’s forbid [ ] on the right of ⊢ and on the left of arrow types in the environment
; no [ ] in the positive positions (right shrinking types);
; dually, no [ ] in the negative positions (left shrinking types).
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Our Contributions (for Strong CbV)

Shrinking types, formally

We take the same type system as [Ehr12], we just restrict the types.

Right multi shrink. M r ::= [Ar
1, . . . ,A

r
n] (n ≥ 1) Right linear shrink. Lr ::= ∗ | Mℓ ⊸ M r

Left multi shrink. Mℓ ::= [Aℓ
1, . . . ,A

ℓ
n] (n ≥ 0) Left linear shrink. Lℓ ::= ∗ | M r ⊸ Mℓ

Def: An environment x1 : M1, . . . , xn : Mn is left shrinking if all Mi ’s are left shrinking.
A typing (Γ;M) is shrinking if Γ is left shrinking and M is right shrinking.
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Our Contributions (for Strong CbV)

The key results 1: Shrinking typability ⇒ external normalization

Thm (Quantitative subject reduction) Let Π ▷ Γ ⊢ t : M a derivation where (Γ,M) is
shrinking. If t →xVSC t′ then there is a derivation Π′ ▷ Γ ⊢ t′ : M with |Π| > |Π′|.

Rmk: Dropping shrinkingness, the quantitative aspect is false! λx .δδ →xVSC λx .(zz)[δ/z]
but both terms are only typable with [ ] using the ! rule with no premises ; |Π| = |Π′|.

Rmk: Replacing →xVSC with →VSC , quantitativity fails! I (λx .II )
̸→xVSC→VSC I (λx .z[I/z]) and

Π =

!
⊢ y : [ ]

λ
⊢ λy .y : [ ] ⊸ [ ]

!
⊢ λy .y : [[ ] ⊸ [ ]]

!
⊢ λx.II : [ ]

@
⊢ I (λx.II ) : [ ]

but any Π′ ▷ ⊢ I (λx .z[I/z]) : [ ] is s.t. |Π′| ≥ |Π|.

Thm (Shrinking correctness) Let Π ▷ Γ ⊢ t : M a derivation where (Γ,M) is shrinking.
Then t →∗

xVSC u where u is VSC -normal.
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Our Contributions (for Strong CbV)

The key results 2: External normalization ⇒ shrinking typability

Lemma: Every VSC-normal form is typable with a shrinking typing.

Thm (Shrinking completeness) Let t →∗
xVSC u where u is VSC -normal. Then

Π ▷ Γ ⊢ t : M a derivation where Γ and M are shrinking.

Cor: If t is VSC-normalizing then t is VSC-normalizing with the external strategy.

Shrinking types define a denotational model: shrinking relational semantics:

JtKshrx⃗ = {(Γ,M) shrinking | Γ ⊢ t : M is derivable} where x⃗ ⊆ fv(t)

which is adequate: JtKshrx⃗ ̸= ∅ iff t is VSC-normalizing.

Rmk: Shrinking completeness fails in FC, see counterexample on p. 15: (λx .I )(y(λz .δδ)).
; The shrinking relational semantics suggests that VSC is the “right” Strong CbV.
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Our Contributions (for Strong CbV)

Thank you!

Questions?
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