Separating Terms through Multi Types

Adrienne Lancelot

Inria & LIX, Ecole Polytechnique
IRIF, Université Paris Cité & CNRS

July 9th 2024 — ITRS

Are these program equivalent?

When studying program equivalence, one searches for any small hint
that programs are not equivalent:

Ax.x + x and Ax.x x x can be distinguished by the input 1 (but not
by the input 2)

Ax.x + x and Ax." Hello World" can be distinguished by types:
Ax.x + x:int — int and Ax." Hello World" : a — string

Separating Terms

Let t and u two A-terms.

» Does there exist a context C such that C(t) does not
terminate and C(u) terminates?

Separating Terms

Let t and u two A-terms.

» Does there exist a context C such that C(t) does not
terminate and C(u) terminates?

» Does there exist a typing judgment (I, L) such that '+ ¢: L
but 't/ u:L?

This talk is about separating with Intersection Types!

Bohm Out Technique

Separating Terms with Contexts: let's reduce term to their head
normal form and find an appropriate context.

Bohm Out Technique

Separating Terms with Contexts: let's reduce term to their head
normal form and find an appropriate context.

» I and are separated by the empty context ()

Bohm Out Technique
Separating Terms with Contexts: let's reduce term to their head
normal form and find an appropriate context.
» I and are separated by the empty context ()

» xIIand xQTI are separated by (Ax.(-))m1 where
T = AX.AY.X

Bohm Out Technique
Separating Terms with Contexts: let's reduce term to their head
normal form and find an appropriate context.
» I and are separated by the empty context ()

» xIIand xQTI are separated by (Ax.(-))m1 where
T = AX.AY.X

» yI(xQI)and yI(xII) areseparated by (Ay.(Ax.(:))m)m2
where m = Ax.Ay.y

Bohm Out Technique
Separating Terms with Contexts: let's reduce term to their head
normal form and find an appropriate context.
» I and are separated by the empty context ()

» xIIand xQTI are separated by (Ax.(-))m1 where
T = AX.AY.X

» yI(xQI)and yI(xII) areseparated by (Ay.(Ax.(:))m)m2
where m = Ax.Ay.y

» xI(xQ1I)and xI(xII) are separated by ??

Type-Bohm Out Technique

Separating Terms with Types: easier than context Bohm out to
select subterms!

xI(xQI) and xI(xII)

x:[[A] = [B] — B,[A] — [B] = A] F_: B

Type-Bohm Out Technique

Separating Terms with Types: easier than context Bohm out to
select subterms!

xI(xQI) and xI(xII)

x:[[A] = [B] — B,[A] — [B] = A] F_: B

N-xI(xII):B but T xI(xQI):B

This Talk

For Weak Head Call-by-Name:

—— Derivation Transfer —>

NF Bisimilarity Type-Bshm Out Type Equivalence

» A coinductive flavor (normal form bisimulations): no
approximants
» Derivation transfer requires non idempotent intersection

types

Weak Head Multi Types

LINEAR TYPES L,L' = x|M—-L keN
Murtt TypEes M,N = [Li,...,L,] n>0

ax \ Mx:MEt:L N
x:[L]Fx:L DF dxtixe F TEMEM—L

I+ t:[L,'],'e/ —o I (F, F UZL,'),'E/ | finite o
FryAbE tu:l’

Type Equivalence

Type Equivalence: t >~ . u if V(L) THt:L <= TFu:l

B-equivalence is included in >~ pe:

» by Subject Reduction and Expansion

n-equivalence is not included in ~yye:
> x:[*o] F x:%o but x:[xo] I/ Ay.xy:%o
> O Ay.xy:xo but 0 I x:%q

Normal form bisimilarity

The syntactical characterization is phrased in a coinductive way,
using Sangiorgi's normal form bisimilarity. It coincides with the
inequational theory induced by Lévy-Longo trees.

Definition (Weak head normal form similarity)

A relation R is a weak head normal (whnf) form simulation if
whenever t R u holds, we have that either:
(J-) t ‘JXWh , or,
(abs) t ywn Ax.t" and u Y,n Ax.u’ with £ R o, or,
(app) tdwh yti---tx and
ulwh yur---ug with (t R uj)i<k.

Whnf similarity, noted =, is the largest whnf simulation.

Derivation Transfer

From bisimilar terms to type equivalent types

—— Derivation Transfer —>
NF Bisimilarity Type Equivalence

Assume t Spfuand r Tt L.
By Subject Reduction, 7/ >T + n;: L
By case analysis on the shape of n;:
Application case:
MExty - te1:[Lilier — L (AiFte:Ly)ie
7 rL‘i‘J(Lﬂ;E[A,')I_nt:th-"tkiL
~ o>l Fny:L asxty---te_1 Spf Xup---Ug—1 and te =,f Uk.

~ ~

By Subject Expansion, o/ >T F u: L.

Derivation Transfer

From bisimilar terms to type equivalent types

—— Derivation Transfer —>
NF Bisimilarity Type Equivalence

The proof goes by induction on the size of derivations.
Assume t Sppuand m> Tt L.
By Quantitative Subject Reduction, 7' >T - n;: L s.it. |7'| < |x|.
By case analysis on the shape of n;:
Application case:
M=ty te1:[Lilier — L (A teili)ier
7 rL‘i‘J(Lﬂ;E[A,')I_nt:th-"tkiL
~ o>l Fny:L asxty---te—1 Spf Xup---Ug—1 and t, =S,f Uk.

~ ~

By Subject Expansion, o/ >T - u: L.

Type Equivalence & Compositionality

Type equivalence is compositional.
» t Ztype U and s Siype r implies ts Siype ur

> t Ziype U implies Ax.t Ziype AX.U

Type Equivalence & Compositionality

Type equivalence is compositional.
» t Ztype U and s Siype r implies ts Siype ur

> t Ziype U implies Ax.t Ziype AX.U

Proposition (Soundness wrto Contextual Equivalence)
If t Ztype U then t S"C"h u

Side note: t S"C"h u does not imply t Ziype U (problems with 7...)

Type-Bohm Out

Separating un-bisimilar terms

NF Bisimilarity Type-Bshm Out Type Equivalence

Coinduction principle: Ziype is @ whnf simulation = ZiypeCZns

We show that Z¢ype is @ whnf simulation by contrapositive:

Let t and u such that t 4 n: and u {,p n, with different
normal forms

~> Build a Separating Type

Separating Terms through Multi Types

Some examples

—

. Separating any abstraction Ax.t and any applied nf x ty - - - ty:

FEow.tixg O [Xty t ko
Then ' must have the shape:
r=o0 ‘ MN=x:[My —---,..]

. Separating a variable x and an applied nf xt:

w N

. Separating different abstractions:

. Separating applied nf where arguments differ, say xt and xu:

N

Separating Terms through Multi Types

Some examples

—

. Separating any abstraction Ax.t and any applied nf x ty - - - ty:

N

. Separating a variable x and an applied nf xt:

FExing FF x %0

Then ' must resemble:
= x:[xo] ‘ FrNox:[M—---,..]
. Separating different abstractions:

w

. Separating applied nf where arguments differ, say xt and xu:

N

Separating Terms through Multi Types

Some examples

—

Separating any abstraction Ax.t and any applied nf x ty - - - ty:

N

Separating a variable x and an applied nf xt:

w

. Separating different abstractions:
Suppose we have [, x: M t:L but I', x: M|7‘u L

Fx:MEt:L
et M oL If TFwuM—L
Then it must start with:

M= Ax.uM— L

. Separating applied nf where arguments differ, say xt and xu:

Mx:Mbu:L

o

Separating Terms through Multi Types

Some examples

. Separating any abstraction Ax.t and any applied nf x ty - - - t:
. Separating a variable x and an applied nf xt:

. Separating different abstractions:

A W NN =

. Separating applied nf where arguments differ, say xt and xu:
Suppose we have '+ t:L but I u: L
Abx:[L] —ox TEt:L :
Ty AF xt:x; If TFxu:x;
Then it must start with:
A'Fx:[Li]i —* (TiFu:ly);
Ty A+ xuix;

If k is well chosen, then A’ = x:[[L] —o %]

Factorizing the need of countable atoms

Compositionality of Ziype is the only part that requires many
distinguishable ground types!

Intuitively: t Ziype U Or 5 Ziype r implies ts Ziype ur

Factorizing the need of countable atoms

Compositionality of Ziype is the only part that requires many
distinguishable ground types!

Intuitively: t Ziype U Or 5 Ziype r implies ts Ziype ur

> Left difference: x ti - -tk Ztype ¥y U1 - Uy implies
Xty tks Ziype Y UL Upr I

» Right difference: xty--- ti Jtype Y U1~ U and s Ziype 1
implies x t1 -+ txS Ztype ¥ U1 - Uk T

Conclusion

e Derivation Transfer ——> .
NF Bisimilarity <—— Type-Bshm Out —— Type Equivalence
Perspectives:

» Towards Call-by-Value equivalences, where NF bisimilarities are
more involved

» Can we adapt type equivalence to reach full abstraction?

———— Definability? ——

Cix. Equiv. <—— Compositionality? ——

Inhabited Type Equiv.

» Can Type-Bohm out help to simplify (Context-)Bohm out ?

Conclusion

e Derivation Transfer ——> .
NF Bisimilarity <—— Type-Bshm Out —— Type Equivalence
Perspectives:

» Towards Call-by-Value equivalences, where NF bisimilarities are
more involved

» Can we adapt type equivalence to reach full abstraction?

———— Definability? ——

Cix. Equiv. <—— Compositionality? ——

Inhabited Type Equiv.

» Can Type-Bohm out help to simplify (Context-)Bohm out ?

Thank you!

