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Are these program equivalent?

When studying program equivalence, one searches for any small hint
that programs are not equivalent:

λx .x + x and λx .x ∗ x can be distinguished by the input 1 (but not
by the input 2)

λx .x + x and λx .”Hello World” can be distinguished by types:
λx .x + x : int→ int and λx .”Hello World”:α→ string



Separating Terms

Let t and u two λ-terms.

I Does there exist a context C such that C 〈t〉 does not
terminate and C 〈u〉 terminates?

I Does there exist a typing judgment (Γ, L) such that Γ ` t :L
but Γ 6` u :L?

This talk is about separating with Intersection Types!
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Böhm Out Technique

Separating Terms with Contexts: let’s reduce term to their head
normal form and find an appropriate context.

I I and Ω are separated by the empty context 〈·〉

I x I I and x Ω I are separated by (λx .〈·〉)π1 where
π1 = λx .λy .x

I y I (x Ω I) and y I (x I I) are separated by (λy .(λx .〈·〉)π1)π2

where π2 = λx .λy .y

I x I (x Ω I) and x I (x I I) are separated by ??
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Type-Böhm Out Technique

Separating Terms with Types: easier than context Böhm out to
select subterms!

x I (x Ω I) and x I (x I I)

x : [ [A]( [B]( B, [A]( [B]( A ] ` : B

Γ ` x I (x I I) :B but Γ 6` x I (x Ω I) :B
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This Talk

For Weak Head Call-by-Name:

NF Bisimilarity Type Equivalence
Derivation Transfer

Type-Böhm Out

I A coinductive flavor (normal form bisimulations): no
approximants

I Derivation transfer requires non idempotent intersection
types



Weak Head Multi Types

Linear Types L, L′ ::= ?k | M ( L k ∈ N
Multi Types M,N ::= [L1, . . . , Ln] n ≥ 0

x : [L] ` x :L
ax

∅ ` λx .t :?k
λk

Γ, x :M ` t :L

Γ ` λx .t :M ( L
λ

Γ ` t : [Li ]i∈I ( L′ (Γi ` u :Li )i∈I I finite

Γ ]∆ ` tu :L′
@



Type Equivalence

Type Equivalence: t 'type u if ∀(Γ, L) Γ ` t :L ⇐⇒ Γ ` u :L

β-equivalence is included in 'type :

I by Subject Reduction and Expansion

η-equivalence is not included in 'type :

I x : [?0] ` x :?0 but x : [?0] 6` λy .x y :?0

I ∅ ` λy .x y :?0 but ∅ 6` x :?0



Normal form bisimilarity

The syntactical characterization is phrased in a coinductive way,
using Sangiorgi’s normal form bisimilarity. It coincides with the
inequational theory induced by Lévy-Longo trees.

Definition (Weak head normal form similarity)

A relation R is a weak head normal (whnf) form simulation if
whenever t R u holds, we have that either:

(⊥) t 6⇓wh , or,
(abs) t ⇓wh λx .t ′ and u ⇓wh λx .u′ with t ′ R u′, or,
(app) t ⇓wh y t1 · · · tk and

u ⇓wh y u1 · · · uk with (ti R ui )i≤k .

Whnf similarity, noted -nf , is the largest whnf simulation.



Derivation Transfer
From bisimilar terms to type equivalent types

NF Bisimilarity Type Equivalence
Derivation Transfer

The proof goes by induction on the size of derivations.
Assume t -nf u and π . Γ ` t :L.
By Quantitative Subject Reduction, π′ . Γ ` nt :L s.t. |π′| ≤ |π|.
By case analysis on the shape of nt :
Application case:

π′ :

Γ ` xt1 · · · tk−1 : [Li ]i∈I ( L (∆i ` tk :Li )i∈I
Γ ] (]i∈I∆i ) ` nt = xt1 · · · tk :L

@

 σ . Γ ` nu :L as xt1 · · · tk−1 -nf xu1 · · · uk−1 and tk -nf uk .
By Subject Expansion, σ′ . Γ ` u :L.
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Type Equivalence & Compositionality

Type equivalence is compositional.

I t -type u and s -type r implies ts -type ur

I t -type u implies λx .t -type λx .u

Proposition (Soundness wrto Contextual Equivalence)

If t -type u then t ≤wh
C u

Side note: t ≤wh
C u does not imply t -type u (problems with η...)
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Type-Böhm Out
Separating un-bisimilar terms

NF Bisimilarity Type Equivalence
Type-Böhm Out

Coinduction principle: -type is a whnf simulation ⇒ -type⊆-nf

We show that -type is a whnf simulation by contrapositive:
Let t and u such that t ⇓wh nt and u ⇓wh nu with different
normal forms

 Build a Separating Type



Separating Terms through Multi Types
Some examples

1. Separating any abstraction λx .t and any applied nf x t1 · · · tk :

Γ ` λx .t :?0
λ0

...
Γ ` x t1 · · · tk :?0

Then Γ must have the shape:
Γ = ∅ Γ = x : [M1 ( · · · , . . .]

2. Separating a variable x and an applied nf xt:

3. Separating different abstractions:

4. Separating applied nf where arguments differ, say xt and xu:

´
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Factorizing the need of countable atoms

Compositionality of 6-type is the only part that requires many
distinguishable ground types!

Intuitively: t 6-type u or s 6-type r implies ts 6-type ur

I Left difference: x t1 · · · tk 6-type y u1 · · · uk ′ implies
x t1 · · · tk s 6-type y u1 · · · uk ′ r.

I Right difference: x t1 · · · tk -type y u1 · · · uk ′ and s 6-type r
implies x t1 · · · tk s 6-type y u1 · · · uk r.
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Conclusion

NF Bisimilarity Type Equivalence
Derivation Transfer

Type-Böhm Out

Perspectives:

I Towards Call-by-Value equivalences, where NF bisimilarities are
more involved

I Can we adapt type equivalence to reach full abstraction?

Ctx. Equiv. Inhabited Type Equiv.
Definability?

Compositionality?

I Can Type-Böhm out help to simplify (Context-)Böhm out ?

Thank you!
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