Intersection Types as Evaluation Types

Pablo Barenbaum¹ Eduardo Bonelli² <u>Mariana Milicich^{3*†}</u>

¹UNQ (CONICET) and ICC, UBA, Argentina

²Stevens Institute of Technology, USA

³Université Paris-Cité, CNRS, IRIF, France

Workshop on Intersection Types and Related Systems 09/07/2024

* This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945332. † Work by this author was partially supported by ICC, UBA, Argentina.

Motivation

Theorem (Intersection types characterise termination)

Type systems

P types \iff P terminates

Programming languages

Motivation

Theorem (Intersection types characterise termination)

Motivation

Theorem (Intersection types characterise termination)

Our Contributions

For both (weak) call-by-name and (weak closed) call-by-value:

- Non-idempotent intersection type systems where terms are typed with their normal form:
 Evaluation types
- One-to-one correspondence between normalisation sequences and typing derivations.

Our Contributions

For both (weak) call-by-name and (weak closed) call-by-value:

- Non-idempotent intersection type systems where terms are typed with their normal form:
 Evaluation types
- One-to-one correspondence between normalisation sequences and typing derivations.

Related work

A. Bernadet and S. Graham-Lengrand proposed an non-idempotent intersection type system for **strong call-by-name** (2013).

- Typing with the *structure* of the normal form.
- Focus on the quantitative aspects of the type system.

Weak Call-by-Name

Syntax

(Terms)
$$t, s$$
 ::= $x \mid \lambda x. t \mid ts$
(Answers) a ::= $\lambda x. t \mid x t_1 \dots t_n$ $(n \ge 0)$

Some answers:

Weak Call-by-Name

Syntax

(Terms)
$$t, s ::= x | \lambda x. t | t s$$

(Answers) $a ::= \lambda x. t | x t_1 ... t_n$ $(n \ge 0)$

Some answers:

Operational Semantics

$$\frac{t \to t'}{(\lambda x. t) s \to t\{x := s\}} \qquad \qquad \frac{t \to t'}{t s \to t' s}$$

Evaluation Types for Call-by-Name

Normal forms and β -redexes are typed with the term a.

- *x* : *x* if *x* is **free**, but otherwise
 - $x: a, a \neq x$
- $(\lambda x. x y) z : z y$
- xyid:xyid

• Left subterms of a **beta-redex** are typed with $t.M \rightarrow A$.

• Typing $\lambda x.xxz$ in $(\lambda x.xxz)y$:

 $\lambda x. x x z : y.[y, y] \rightarrow y y z$

Evaluation Types for Call-by-Name

Typing judgements:

$$\sigma$$
; $\Gamma \vdash t \Downarrow A$

- σ : lists of substitutions $(x_1: t_1, \ldots, x_n: t_n)$
- Γ : function mapping variables to multisets of types

Evaluation Types for Call-by-Name

Typing judgements:

$$\sigma$$
; $\Gamma \vdash t \Downarrow A$

- σ : lists of substitutions $(x_1: t_1, \ldots, x_n: t_n)$
- Γ : function mapping variables to multisets of types

Two typing rules for each term in the syntax to distinguish:

- Variables bound by abstractions from those that are not.
- Abstractions to the left of a β -redex from those that are not.
- β -redexes from **applications** whose head term is a variable.

Evaluation Types for Call-by-Name Typing Rules

$x \notin dom(\sigma)$	$x \in dom(\sigma)$	$fv(A) \# dom(\sigma)$
$\overline{\sigma; \varnothing \vdash x \Downarrow x}$	σ ; x : [A] \vdash x \Downarrow A	
	$\sigma, x : s; \Gamma, x : M \vdash t \Downarrow A$	
$\overline{\sigma; \varnothing \vdash \lambda x. t \Downarrow \lambda x. t^{\sigma}}$	$\overline{\sigma};\Gamma\vdash\lambda$	$x.t \Downarrow s.M \to A$
$\sigma; \Gamma \vdash t \Downarrow \times t_1 \dots t_n$		
$\overline{\sigma; \Gamma \vdash t s \Downarrow \times t_1 \dots t_n s^{\sigma}}$		
$\sigma; \Gamma \vdash t \Downarrow s^{\sigma}.[A_1, \dots, A_n] \to B (\sigma; \Delta_i \vdash s \Downarrow A_i)_{i=1}^n$		
$\overline{\sigma;\Gamma+_{i=1}^{n}\Delta_{i}\vdash t s\Downarrow B}$		

Evaluation Types for Call-by-Name Example

Let $id := \lambda x_1 \cdot x_1$

$$\frac{\overline{x: \operatorname{id} z; x: [z] \vdash x \Downarrow z}}{x: \operatorname{id} z; x: [z] \vdash x y \Downarrow z y} \qquad \overline{x_1: z; x_1: [z] \vdash x_1 \Downarrow z} \\ \overline{\emptyset; \emptyset \vdash \lambda x. xy \Downarrow (\operatorname{id} z). [z] \to zy} \qquad \overline{\emptyset; \emptyset \vdash \operatorname{id} \Downarrow z. [z] \to z} \qquad \overline{\emptyset; \emptyset \vdash z \Downarrow z} \\ \overline{\emptyset; \emptyset \vdash (\lambda x. xy) (\operatorname{id} z) \Downarrow z y}$$

Let

- \mathcal{D} be the set of typing derivations
- \blacksquare ${\mathscr R}$ be the set of normalisation sequences

Let

- Description of typing derivations
- **\square** \mathscr{R} be the set of **normalisation sequences**

Theorem (One-to-one correspondence between \mathscr{D} and \mathscr{R}) There exist mappings $f : \mathscr{D} \to \mathscr{R}$ and $g : \mathscr{R} \to \mathscr{D}$ such that:

1 If $D \triangleright \emptyset$; $\emptyset \vdash t \Downarrow a$ then $f(D) \triangleright t \twoheadrightarrow a$.

2 If $\mathbb{R} \triangleright t \twoheadrightarrow \mathbb{a}$ then $g(\mathbb{R}) \triangleright \emptyset; \emptyset \vdash t \Downarrow \mathbb{a}$.

Furthermore, f and g are mutual inverses.

Theorem (One-to-one correspondence between \mathscr{D} and \mathscr{R}) There exist mappings $f : \mathscr{D} \to \mathscr{R}$ and $g : \mathscr{R} \to \mathscr{D}$ such that:

1 If $D \triangleright \emptyset$; $\emptyset \vdash t \Downarrow a$ then $f(D) \triangleright t \twoheadrightarrow a$.

2 If $\mathbb{R} \triangleright t \rightarrow \mathbb{A}$ then $g(\mathbb{R}) \triangleright \emptyset; \emptyset \vdash t \Downarrow \mathfrak{a}$.

Furthermore, f and g are mutual inverses.

Both mappings are obtained by construction:

- If $D \triangleright \emptyset; \emptyset \vdash a \Downarrow a$, then $f(D) := \epsilon$
- Otherwise, t is a β -redex $(\lambda x.s)u$, so $f(D) := (\lambda x.s)u$; f(D'), where D' is a typing derivation of $s\{x := u\}$ obtained by Subject Reduction.

Theorem (One-to-one correspondence between \mathscr{D} and \mathscr{R}) There exist mappings $f : \mathscr{D} \to \mathscr{R}$ and $g : \mathscr{R} \to \mathscr{D}$ such that:

1 If $D \triangleright \emptyset$; $\emptyset \vdash^n t \Downarrow a$ then $f(D) \triangleright t \twoheadrightarrow a$, with |f(D)| = n.

2 If $\mathbb{R} \triangleright t \rightarrow a$ with $|\mathbb{R}| = n$ then $g(\mathbb{R}) \triangleright \emptyset; \emptyset \vdash^{n} t \Downarrow a$.

Furthermore, f and g are mutual inverses.

Both mappings are obtained by **construction**:

- If $D \triangleright \emptyset; \emptyset \vdash a \Downarrow a$, then $f(D) := \epsilon$
- Otherwise, t is a β -redex $(\lambda x.s)u$, so $f(D) := (\lambda x.s)u$; f(D'), where D' is a typing derivation of $s\{x := u\}$ obtained by Subject Reduction.

Conclusions:

- One-to-one correspondence between typing derivations and normalisation sequences.
- This provides a refined characterisation of termination.

New result I obtained:

 Exact measures in our theorems by adding a counter in the typing judgements.

Future work:

- Propose an evaluation type system for closed call-by-need: it is not trivial, as its <u>based on evaluation contexts</u>.
- Relate evaluation type systems to other non-idempotent intersection type systems.

Evaluation Types for Call-by-Value Typing rules

$$A :::= v.M \to w.N$$
$$M ::= [A_1, ..., A_n] \quad (n \ge 0)$$
$$\frac{x \in \operatorname{dom}(\sigma)}{\sigma; x : M \vdash x \Downarrow_{value} \sigma(x).M} \quad \frac{\sigma, x : v; \Gamma, x : M \vdash t \Downarrow_{value} w.N}{\sigma; \Gamma \vdash \lambda x. t \Downarrow_{value} v.M \to w.N}$$
$$\frac{\sigma; \Gamma \vdash t \Downarrow_{value} v.[w.M \to u.N] \quad \sigma; \Delta \vdash s \Downarrow_{value} w.M}{\sigma; \Gamma \vdash \Delta \vdash t s \Downarrow_{value} u.N}$$
$$\frac{(\sigma; \Gamma_i \vdash \lambda x. t \Downarrow_{value} A_i)_{i=1}^n}{\sigma; +_{i=1}^n \Gamma_i \vdash \lambda x. t \Downarrow_{value} (\lambda x. t^{\sigma}).[A_1, ..., A_n]}$$