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Motivation

Theorem (Intersection types characterise termination)�� ��Type systems P types ⇐⇒ P terminates
�� ��Programming languages

Is it possible to
use intersection types as a notation

for normalisation sequences?

given a normal form N,
typing with N ⇐⇒ terminating in N
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Our Contributions

For both (weak) call-by-name and (weak closed) call-by-value:

Non-idempotent intersection type systems where
terms are typed with their normal form:
Evaluation types
One-to-one correspondence between
normalisation sequences and typing derivations.

Related work
A. Bernadet and S. Graham-Lengrand proposed an non-idempotent
intersection type system for strong call-by-name (2013).

Typing with the structure of the normal form.
Focus on the quantitative aspects of the type system.
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Weak Call-by-Name

Syntax

(Terms) t,s ::= x |λx .t | t s
(Answers) a ::= λx .t | x t1 . . .tn (n≥ 0)

Some answers:
x id x y id

Operational Semantics

(λx .t)s → t{x := s}

t → t ′

t s → t ′ s
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Evaluation Types for Call-by-Name

A ::= a | t.M →A
M ::= [A1, . . . ,An] (n≥ 0)

Normal forms and β-redexes are typed with the term a.
x : x if x is free, but otherwise
x : a, a ̸= x
(λx .x y)z : z y
x y id : x y id

Left subterms of a beta-redex are typed with t.M →A.
Typing λx .x x z in (λx .x x z)y :

λx .x x z : y .[y ,y ]→ y y z
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Evaluation Types for Call-by-Name

Typing judgements:
σ ;Γ⊢ t ⇓A

σ: lists of substitutions (x1 : t1, . . . ,xn : tn)

Γ: function mapping variables to multisets of types

Two typing rules for each term in the syntax to distinguish:
Variables bound by abstractions from those that are not.
Abstractions to the left of a β-redex from those that are not.
β-redexes from applications whose head term is a variable.
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Evaluation Types for Call-by-Name
Typing Rules

x ∉ dom(σ)

σ ;∅⊢ x ⇓ x
x ∈ dom(σ) fv(A)# dom(σ)

σ ;x : [A]⊢ x ⇓A

σ ;∅⊢ λx .t ⇓λx .tσ
σ,x : s ;Γ,x :M ⊢ t ⇓A
σ ;Γ⊢ λx .t ⇓ s .M →A

σ ;Γ⊢ t ⇓ x t1 . . .tn

σ ;Γ⊢ t s ⇓ x t1 . . .tn s
σ

σ ;Γ⊢ t ⇓ sσ.[A1, . . . ,An]→B (σ ;∆i ⊢ s ⇓Ai )
n
i=1

σ ;Γ+n
i=1∆i ⊢ t s ⇓B
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Evaluation Types for Call-by-Name
Example

Let id :=λx1.x1

x : idz ;x : [z ]⊢ x ⇓ z
x : idz ;x : [z ]⊢ x y ⇓ z y

∅ ;∅⊢ λx .x y ⇓ (idz).[z ]→ z y

x1 : z ;x1 : [z ]⊢ x1 ⇓ z
∅ ;∅⊢ id ⇓ z .[z ]→ z ∅ ;∅⊢ z ⇓ z

∅ ;∅⊢ idz ⇓ z
∅ ;∅⊢ (λx .x y)(idz) ⇓ z y
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Evaluation Types for Call-by-Name
Results

Let
D be the set of typing derivations
R be the set of normalisation sequences

Theorem (One-to-one correspondence between D and R)
There exist mappings f :D →R and g :R →D such that:

1 If D▷∅ ;∅⊢

n

t ⇓ a then f (D)▷ t↠ a.

2 If R▷ t↠ a then g(R)▷∅ ;∅⊢ t ⇓ a.
Furthermore, f and g are mutual inverses.
Both mappings are obtained by construction:

If D▷∅ ;∅⊢ a ⇓ a, then f (D) := ϵ

Otherwise, t is a β-redex (λx .s)u, so f (D) := (λx .s)u ; f (D′) ,
where D′ is a typing derivation of s{x := u} obtained by Subject
Reduction.
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Conclusions:
One-to-one correspondence between typing derivations and
normalisation sequences.
This provides a refined characterisation of termination.

New result I obtained:
Exact measures in our theorems by adding a counter in the
typing judgements.

Future work:
Propose an evaluation type system for closed call-by-need: it
is not trivial, as its based on evaluation contexts.
Relate evaluation type systems to other non-idempotent
intersection type systems.
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Thank you! Questions?
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Evaluation Types for Call-by-Value
Typing rules

A ::= v.M → w.N
M ::= [A1, . . . ,An] (n≥ 0)

x ∈ dom(σ)

σ ;x :M ⊢ x ⇓value σ(x).M

σ,x : v ;Γ,x :M ⊢ t ⇓value w.N

σ ;Γ⊢λx .t ⇓value v.M → w.N

σ ;Γ⊢ t ⇓value v.[w.M → u.N] σ ;∆⊢ s ⇓value w.M

σ ;Γ+∆⊢ t s ⇓value u.N

(σ ;Γi ⊢λx .t ⇓value Ai )
n
i=1

σ ;+n
i=1Γi ⊢λx .t ⇓value (λx .tσ).[A1, . . . ,An]
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