Intersection Types as Evaluation Types

Pablo Barenbaum¹ Eduardo Bonelli² Mariana Milicich^{3∗†}

¹UNQ (CONICET) and ICC, UBA, Argentina

²Stevens Institute of Technology, USA

³Université Paris-Cité, CNRS, IRIF, France

Workshop on Intersection Types and Related Systems 09/07/2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945332. †Work by this author was partially supported by ICC, UBA, Argentina.

Motivation

Theorem (Intersection types characterise termination)

 $\sqrt{L_{\text{max}}$ ✂

✁

 P types \iff P terminates

Programming languages

Ì. \overline{a}

Motivation

Theorem (Intersection types characterise termination)

Motivation

Theorem (Intersection types characterise termination)

Our Contributions

For both (weak) call-by-name and (weak closed) call-by-value:

■ Non-idempotent intersection type systems where terms are typed with their normal form: Evaluation types

One-to-one correspondence between normalisation sequences and typing derivations.

Our Contributions

For both (weak) call-by-name and (weak closed) call-by-value:

■ Non-idempotent intersection type systems where terms are typed with their normal form: Evaluation types

One-to-one correspondence between normalisation sequences and typing derivations.

Related work

A. Bernadet and S. Graham-Lengrand proposed an non-idempotent intersection type system for strong call-by-name (2013).

- Typing with the *structure* of the normal form.
- \blacksquare Focus on the quantitative aspects of the type system.

Weak Call-by-Name

Syntax

(Terms)
$$
t, s ::= x | \lambda x. t | t s
$$

(Answers) a ::= $\lambda x. t | x t_1 ... t_n$ ($n \ge 0$)

Some answers:

$$
\begin{array}{ccc} x & \text{ id} & xy \text{ id} \end{array}
$$

Weak Call-by-Name

Syntax

(Terms)
$$
t, s ::= x | \lambda x. t | t s
$$

(Answers) a ::= $\lambda x. t | x t_1 ... t_n$ ($n \ge 0$)

Some answers:

$$
\hspace{1.6cm} \hspace{1.2cm} \hspace{
$$

Operational Semantics

$$
\frac{t \to t'}{(\lambda x. t) s \to t \{x := s\}}
$$

$$
\frac{t \to t'}{ts \to t' s}
$$

′

$$
A ::= \mathbf{a} | t.M \rightarrow A
$$

$$
M ::= [A_1,..., A_n] \qquad (n \ge 0)
$$

■ **Normal forms** and *β*-redexes are typed with the term a.

- $\mathbb{R} \times \mathbb{R}$ if x is free, but otherwise
	- $x : a, a \neq x$
- $(\lambda x.xy)z:zy$
- \blacksquare x y id : x y id

E Left subterms of a **beta-redex** are typed with $t.M \rightarrow A$.

Typing $\lambda x. x x z$ in $(\lambda x. x x z) y$:

 $\lambda x. x x z : y. [y, y] \rightarrow y y z$

Typing judgements:

$$
\sigma ; \Gamma \vdash t \Downarrow A
$$

- \bullet *σ*: lists of substitutions $(x_1 : t_1, \ldots, x_n : t_n)$
- **Γ**: function mapping variables to multisets of types

Typing judgements:

$$
\sigma ; \Gamma \vdash t \Downarrow A
$$

- σ : lists of substitutions $(x_1 : t_1, \ldots, x_n : t_n)$
- **Γ**: function mapping variables to multisets of types

Two typing rules for each term in the syntax to distinguish:

- **Nariables** bound by abstractions from those that are not.
- **Abstractions** to the left of a *β*-redex from those that are not.
- *β*-redexes from applications whose head term is a variable.

Evaluation Types for Call-by-Name Typing Rules

Evaluation Types for Call-by-Name Example

Let id: $=\lambda x_1.x_1$

Let

- \Box \mathscr{D} be the set of typing derivations
- \blacksquare $\mathcal R$ be the set of normalisation sequences

Let

- \Box \mathscr{D} be the set of typing derivations
- \blacksquare $\mathcal R$ be the set of normalisation sequences

Theorem (One-to-one correspondence between $\mathscr D$ and $\mathscr R$) There exist mappings $f : \mathcal{D} \to \mathcal{R}$ and $g : \mathcal{R} \to \mathcal{D}$ such that:

1 If $D \triangleright \varnothing$; $\varnothing \vdash t \Downarrow$ a then $f(D) \triangleright t \rightarrow a$.

2 If $R \triangleright t \rightarrow a$ then $g(R) \triangleright \emptyset$; $\emptyset \vdash t \Downarrow a$. Furthermore, f and g are mutual inverses.

Theorem (One-to-one correspondence between $\mathscr D$ and $\mathscr R$) There exist mappings $f : \mathcal{D} \to \mathcal{R}$ and $g : \mathcal{R} \to \mathcal{D}$ such that:

1 If
$$
D \triangleright \varnothing
$$
; $\varnothing \vdash t \Downarrow$ a then $f(D) \triangleright t \rightarrow a$.

2 If $R \triangleright t \rightarrow a$ then $g(R) \triangleright \emptyset$; $\emptyset \vdash t \Downarrow a$.

Furthermore, f and g are mutual inverses.

Both mappings are obtained by construction:

- **If** $D \triangleright \emptyset$; $\emptyset \vdash a \Downarrow a$, then $f(D) := \epsilon$
- Otherwise, *t* is a *β*-redex $(λx.s)u$, so $f(D) := (λx.s)u$; $f(D')$, where D' is a typing derivation of $s\{x := u\}$ obtained by Subject Reduction.

Theorem (One-to-one correspondence between $\mathscr D$ and $\mathscr R$) There exist mappings $f : \mathcal{D} \to \mathcal{R}$ and $g : \mathcal{R} \to \mathcal{D}$ such that:

1 If $D \triangleright \varnothing$; $\varnothing \vdash^n t \Downarrow$ a then $f(D) \triangleright t \rightarrow a$, with $|f(D)| = n$.

2 If $R \triangleright t \rightarrow$ a with $|R| = n$ then $g(R) \triangleright \varnothing$; $\varnothing \vdash^n t \Downarrow$ a.

Furthermore, f and g are mutual inverses.

Both mappings are obtained by construction:

- **If** $D \triangleright \emptyset$; $\emptyset \vdash a \Downarrow a$, then $f(D) := \epsilon$
- Otherwise, *t* is a *β*-redex $(λx.s)u$, so $f(D) := (λx.s)u$; $f(D')$, where D' is a typing derivation of $s\{x := u\}$ obtained by Subject Reduction.

Conclusions:

- One-to-one correspondence between typing derivations and normalisation sequences.
- **This provides a refined characterisation of termination.**

New result I obtained:

Exact measures in our theorems by adding a counter in the typing judgements.

Future work:

- **Propose an evaluation type system for closed call-by-need: it** is not trivial, as its based on evaluation contexts.
- Relate evaluation type systems to other non-idempotent intersection type systems.

[Evaluation Types for Call-by-Value](#page-0-0) Typing rules

$$
A ::= v.M \rightarrow w.N
$$

\n
$$
M ::= [A_1,..., A_n] \qquad (n \ge 0)
$$

\n
$$
\frac{x \in dom(\sigma)}{\sigma; x : M \vdash x \Downarrow_{value} \sigma(x).M} \qquad \frac{\sigma, x : v; \Gamma, x : M \vdash t \Downarrow_{value} w.N}{\sigma; \Gamma \vdash \lambda x. t \Downarrow_{value} v.M \rightarrow w.N}
$$

\n
$$
\frac{\sigma; \Gamma \vdash t \Downarrow_{value} v.[w.M \rightarrow u.N]}{\sigma; \Gamma \vdash \Delta \vdash t s \Downarrow_{value} u.N}
$$

\n
$$
(\sigma; \Gamma_i \vdash \lambda x. t \Downarrow_{value} A_i)_{i=1}^n
$$

\n
$$
\frac{(\sigma; \Gamma_i \vdash \lambda x. t \Downarrow_{value} (\lambda x. t^{\sigma}).[A_1,..., A_n]}{\sigma; + \frac{n}{i-1} \Gamma_i \vdash \lambda x. t \Downarrow_{value} (\lambda x. t^{\sigma}).[A_1,..., A_n]}
$$