Intersection Types as Evaluation Types

Pablo Barenbaum! Eduardo Bonelli2 Mariana Milicich3*f

LUNQ (CONICET) and ICC, UBA, Argentina
2Stevens Institute of Technology, USA

3Université Paris-Cité, CNRS, IRIF, France

Workshop on Intersection Types and Related Systems
09/07/2024

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under the Marie Sktodowska-Curie grant agreement No 945332.

1lW(.:vrk by this author was partially supported by ICC, UBA, Argentina.

1/11

Motivation

Theorem (Intersection types characterise termination)

P types — P terminates [Programming Ianguages]

2/11

Motivation

Theorem (Intersection types characterise termination)

P types < P terminates []

Is it possible to
use intersection types as a notation
for normalisation sequences?

2/11

Motivation

Theorem (Intersection types characterise termination)

P types < P terminates []

given a normal form N,

typing with N < terminating in N

2/11

Our Contributions

For both (weak) call-by-name and (weak closed) call-by-value:

m Non-idempotent intersection type systems where
terms are typed with their normal form:

m One-to-one correspondence between
normalisation sequences and typing derivations.

3/11

Our Contributions

For both (weak) call-by-name and (weak closed) call-by-value:

m Non-idempotent intersection type systems where
terms are typed with their normal form:

m One-to-one correspondence between
normalisation sequences and typing derivations.

Related work
A. Bernadet and S. Graham-Lengrand proposed an non-idempotent
intersection type system for strong call-by-name (2013).

m Typing with the structure of the normal form.

m Focus on the quantitative aspects of the type system.

3/11

Weak Call-by-Name

Syntax

(Terms) t,s
(Answers) a

x| Ax.t|ts
Ax.txty...ty (n=0)

Some answers:
X id xyid

4/11

Weak Call-by-Name

Syntax

(Terms) t,s
(Answers) a

x| Ax.t|ts
Ax.txty...ty (n=0)

Some answers:
X id xyid
Operational Semantics

t—t

(Ax.t)s — tix:=s} ts—t's

4/11

Evaluation Types for Call-by-Name

altM—A

A
M [AL...A)] (n=0)

m Normal forms and f-redexes are typed with the term a.
B x:x if x is free, but otherwise
X:a, aZzx
m (Ax.xy)z:zy
B xyid:xyid
m Left subterms of a beta-redex are typed with t.M — A.
m Typing Ax.xxz in (Ax.xxz)y:

Ax.xxz:yly,yl—=yyz

5/11

Evaluation Types for Call-by-Name

Typing judgements:
o THt]JA

m 0 lists of substitutions (x1 : t1,...,Xn: tn)

m I': function mapping variables to multisets of types

6/11

Evaluation Types for Call-by-Name

Typing judgements:
o THt]JA

m 0 lists of substitutions (x1 : t1,...,Xn: tn)

m I': function mapping variables to multisets of types

Two typing rules for each term in the syntax to distinguish:

m Variables bound by abstractions from those that are not.

m Abstractions to the left of a f-redex from those that are not.

m f-redexes from applications whose head term is a variable.

6/11

Evaluation Types for Call-by-Name
Typing Rules

x ¢ dom(o) xedom(a) fv(A)# dom(o)
o, x|x g;x:[AlFxUA

ox:s;Ix:MEtJA
o, FF Ax.t | Ax.t o THAx.tys.M—A

o T'Ftxty...t,
o TkHts|xty...tys”

o, TEtys"[Ar,....A] =B (0;AiFsUA)L,
o, T+ ;AjFtsyB

7/11

Evaluation Types for Call-by-Name

Example

Let id:=Axy.xq

x:idz;x:[z]F x|z x1:z;x1:z]F x|z
x:idz;x:[z]Fxy U zy @, orid|z.[z] -z ©,9Fz|z
@0+ Ax.xy | (idz).[z] = zy @;0Fidz |z

@,k (Ax.xy)(idz) J zy

8/11

Evaluation Types for Call-by-Name
Results
Let
m 2 be the set of typing derivations
m Z be the set of normalisation sequences

9/11

Evaluation Types for Call-by-Name
Results
Let
m 2 be the set of typing derivations
m Z be the set of normalisation sequences

Theorem (One-to-one correspondence between 2 and %)
There exist mappings f: 9 — R and g : & — D such that:
IfD>@; 0+ tl|athen f(D)>t— a.

IfR>t—a then g(R)>@; @+ t|a.

Furthermore, f and g are mutual inverses.

9/11

Evaluation Types for Call-by-Name

Results

Theorem (One-to-one correspondence between 2 and %)
There exist mappings f: 9 — R and g : R — D such that:

IfD>@;2F t{a then f(D)>t—a.

IfR>t—a then g(R)>@;@Ft|a.

Furthermore, f and g are mutual inverses.

Both mappings are obtained by construction:
mIfD>2;0Fala, then f(D):=¢
m Otherwise, t is a f-redex (Ax.s)u, so f(D):=(Ax.s)u; (D),

where D' is a typing derivation of s{x := u} obtained by Subject
Reduction.

9/11

Evaluation Types for Call-by-Name

Results

Theorem (One-to-one correspondence between 2 and %)
There exist mappings f: 9 — R and g : R — D such that:

IfD>2; 0"t | a then f(D)>t— a, with |f(D)|=n.

IfRe>t—a with |R|=n then g(R)>2;0F"t | a.
Furthermore, f and g are mutual inverses.
Both mappings are obtained by construction:
mIfD>2;0Fala, then f(D):=¢
m Otherwise, t is a f-redex (Ax.s)u, so f(D):=(Ax.s)u; (D),

where D' is a typing derivation of s{x := u} obtained by Subject
Reduction.

9/11

Conclusions:

m One-to-one correspondence between typing derivations and
normalisation sequences.

m This provides a refined characterisation of termination.

New result | obtained:

m Exact measures in our theorems by adding a counter in the
typing judgements.

Future work:

m Propose an evaluation type system for closed call-by-need: it
is not trivial, as its based on evaluation contexts.

m Relate evaluation type systems to other non-idempotent
intersection type systems.

10/11

11/11

Evaluation Types for Call-by-Value

Typing rules
A = vM-uNlN
M = [A1,...,Ad] (n=0)
x € dom(o) o,x:v;I,x: Mt {yauew.N

0;x:MEx Jvalue 0(x).M 0T F Ax.t Jyalye V.M — w.N

0;TFtlvaev.[w.M—-uN] o;AFsaew.M
g, T+AFtsyaueu.N

(O’;F; FAx.t Uvalue A")?zl
o+ Tik Ax.t Yvawe (Ax. t7).[A1,..., Ap]

12/11

	Appendix

