
Intersection Types Meet Session Types
Reconciling Two Different Views on Computational Resources

Jorge A. Pérez
University of Groningen, The Netherlands

ITRS 2024 - Tallinn

https://www.jperez.nl

Collaborators

Daniele Nantes
(Imperial College, UK and
University of Brasília, BR)

Joseph Paulus
(Oxford University, UK)

Bas van den Heuvel
(HKA Karlsruhe and

University of Freiburg, DE)

Pérez (Groningen, NL) Intersection Types Meet Session Types 2 / 18

https://www.jperez.nl

This Talk

A brief overview of formal connections between intersection types with session types
for concurrency (FSCD’21, TYPES’21, APLAS’23, MFPS’24).

I Non-idempotent intersection types and session types with Curry-Howard
foundations (aka ‘propositions-as-sessions’)

I Two different approaches on resource control:
I In λ: Resources are terms, whose types can ensure quantitative properties
I In π: Resources are channels, whose types enforce linear usage for correctness

I Key unifying aspects: non-determinism, confluence / commitment, failures
I Relative expressiveness: Typed λ-calculi translated into session-typed π-calculi
I A concurrent interpretation of intersection types, with strong correctness

properties: static (type preservation) and dynamic (operational correspondence)

Pérez (Groningen, NL) Intersection Types Meet Session Types 3 / 18

https://doi.org/10.46298/lmcs-19(4:1)2023
https://doi.org/10.4230/LIPIcs.TYPES.2021.11
https://doi.org/10.1007/978-981-99-8311-7_6
https://oxford24.github.io/assets/mfps-papers/MFPS24-9.pdf
https://www.jperez.nl

This Talk

A brief overview of formal connections between intersection types with session types
for concurrency (FSCD’21, TYPES’21, APLAS’23, MFPS’24).

I Non-idempotent intersection types and session types with Curry-Howard
foundations (aka ‘propositions-as-sessions’)

I Two different approaches on resource control:
I In λ: Resources are terms, whose types can ensure quantitative properties
I In π: Resources are channels, whose types enforce linear usage for correctness

I Key unifying aspects: non-determinism, confluence / commitment, failures
I Relative expressiveness: Typed λ-calculi translated into session-typed π-calculi
I A concurrent interpretation of intersection types, with strong correctness

properties: static (type preservation) and dynamic (operational correspondence)

Pérez (Groningen, NL) Intersection Types Meet Session Types 3 / 18

https://doi.org/10.46298/lmcs-19(4:1)2023
https://doi.org/10.4230/LIPIcs.TYPES.2021.11
https://doi.org/10.1007/978-981-99-8311-7_6
https://oxford24.github.io/assets/mfps-papers/MFPS24-9.pdf
https://www.jperez.nl

This Talk

A brief overview of formal connections between intersection types with session types
for concurrency (FSCD’21, TYPES’21, APLAS’23, MFPS’24).

I Non-idempotent intersection types and session types with Curry-Howard
foundations (aka ‘propositions-as-sessions’)

I Two different approaches on resource control:
I In λ: Resources are terms, whose types can ensure quantitative properties
I In π: Resources are channels, whose types enforce linear usage for correctness

I Key unifying aspects: non-determinism, confluence / commitment, failures

I Relative expressiveness: Typed λ-calculi translated into session-typed π-calculi
I A concurrent interpretation of intersection types, with strong correctness

properties: static (type preservation) and dynamic (operational correspondence)

Pérez (Groningen, NL) Intersection Types Meet Session Types 3 / 18

https://doi.org/10.46298/lmcs-19(4:1)2023
https://doi.org/10.4230/LIPIcs.TYPES.2021.11
https://doi.org/10.1007/978-981-99-8311-7_6
https://oxford24.github.io/assets/mfps-papers/MFPS24-9.pdf
https://www.jperez.nl

This Talk

A brief overview of formal connections between intersection types with session types
for concurrency (FSCD’21, TYPES’21, APLAS’23, MFPS’24).

I Non-idempotent intersection types and session types with Curry-Howard
foundations (aka ‘propositions-as-sessions’)

I Two different approaches on resource control:
I In λ: Resources are terms, whose types can ensure quantitative properties
I In π: Resources are channels, whose types enforce linear usage for correctness

I Key unifying aspects: non-determinism, confluence / commitment, failures
I Relative expressiveness: Typed λ-calculi translated into session-typed π-calculi

I A concurrent interpretation of intersection types, with strong correctness
properties: static (type preservation) and dynamic (operational correspondence)

Pérez (Groningen, NL) Intersection Types Meet Session Types 3 / 18

https://doi.org/10.46298/lmcs-19(4:1)2023
https://doi.org/10.4230/LIPIcs.TYPES.2021.11
https://doi.org/10.1007/978-981-99-8311-7_6
https://oxford24.github.io/assets/mfps-papers/MFPS24-9.pdf
https://www.jperez.nl

This Talk

A brief overview of formal connections between intersection types with session types
for concurrency (FSCD’21, TYPES’21, APLAS’23, MFPS’24).

I Non-idempotent intersection types and session types with Curry-Howard
foundations (aka ‘propositions-as-sessions’)

I Two different approaches on resource control:
I In λ: Resources are terms, whose types can ensure quantitative properties
I In π: Resources are channels, whose types enforce linear usage for correctness

I Key unifying aspects: non-determinism, confluence / commitment, failures
I Relative expressiveness: Typed λ-calculi translated into session-typed π-calculi
I A concurrent interpretation of intersection types, with strong correctness

properties: static (type preservation) and dynamic (operational correspondence)

Pérez (Groningen, NL) Intersection Types Meet Session Types 3 / 18

https://doi.org/10.46298/lmcs-19(4:1)2023
https://doi.org/10.4230/LIPIcs.TYPES.2021.11
https://doi.org/10.1007/978-981-99-8311-7_6
https://oxford24.github.io/assets/mfps-papers/MFPS24-9.pdf
https://www.jperez.nl

Our Translation, In a Nutshell (FSCD’21 / LMCS’23)

Source: λ ⊕, a resource λ-calculus with non-determinism and failure
I Applications M B , where B is a bag of terms, to be non-determically fetched
I Failure occurs when a bag’s size doesn’t match the variable occurrences
I Intersection types measure the size of a bag and count variable occurrences

I Expressions can be well-typed (fail-free) or well-formed (fail-prone)

Target: sπ, a session-typed π-calculus with non-deterministically available behaviors
I Session types: The protocols that names of a process must respect
I Under ‘propositions-as-sessions’, session type = linear logic proposition
I Non-deterministic processes, whose protocols may proceed as intended or fail
I Well-typed processes respect their types, with confluence and deadlock-freedom

Pérez (Groningen, NL) Intersection Types Meet Session Types 4 / 18

https://www.jperez.nl

Our Translation, In a Nutshell (FSCD’21 / LMCS’23)

Source: λ ⊕, a resource λ-calculus with non-determinism and failure
I Applications M B , where B is a bag of terms, to be non-determically fetched
I Failure occurs when a bag’s size doesn’t match the variable occurrences
I Intersection types measure the size of a bag and count variable occurrences
I Expressions can be well-typed (fail-free) or well-formed (fail-prone)

Target: sπ, a session-typed π-calculus with non-deterministically available behaviors
I Session types: The protocols that names of a process must respect
I Under ‘propositions-as-sessions’, session type = linear logic proposition
I Non-deterministic processes, whose protocols may proceed as intended or fail
I Well-typed processes respect their types, with confluence and deadlock-freedom

Pérez (Groningen, NL) Intersection Types Meet Session Types 4 / 18

https://www.jperez.nl

Our Translation, In a Nutshell (FSCD’21 / LMCS’23)

Source: λ ⊕, a resource λ-calculus with non-determinism and failure
I Applications M B , where B is a bag of terms, to be non-determically fetched
I Failure occurs when a bag’s size doesn’t match the variable occurrences
I Intersection types measure the size of a bag and count variable occurrences
I Expressions can be well-typed (fail-free) or well-formed (fail-prone)

Target: sπ, a session-typed π-calculus with non-deterministically available behaviors
I Session types: The protocols that names of a process must respect
I Under ‘propositions-as-sessions’, session type = linear logic proposition
I Non-deterministic processes, whose protocols may proceed as intended or fail
I Well-typed processes respect their types, with confluence and deadlock-freedom

Pérez (Groningen, NL) Intersection Types Meet Session Types 4 / 18

https://www.jperez.nl

Our Translation, In a Nutshell (FSCD’21 / LMCS’23)
Structly speaking, two translations:

1. We first translate λ ⊕ into a resource λ-calculus with sharing constructs
A direct translation, useful to make different variable occurrences explicit

2. The translation into processes leverages sharing to enforce linearity; failure for
terms accounted as non-available protocols

Pérez (Groningen, NL) Intersection Types Meet Session Types 5 / 18

https://www.jperez.nl

A resource λ-calculus with failure (λ ⊕)
Syntax:

(Terms) M ,N ,L ::= x | λx .M | (M B) | M 〈〈B/x 〉〉 | failex
(Bags) A,B ::= 1 | *M + | A ·B
(Expressions) M,N,L ::= M | M+ N

Reduction (Excerpt):

Pérez (Groningen, NL) Intersection Types Meet Session Types 6 / 18

https://www.jperez.nl

A resource λ-calculus with failure (λ ⊕)
Syntax:

(Terms) M ,N ,L ::= x | λx .M | (M B) | M 〈〈B/x 〉〉 | failex
(Bags) A,B ::= 1 | *M + | A ·B
(Expressions) M,N,L ::= M | M+ N

Reduction (Excerpt):

Pérez (Groningen, NL) Intersection Types Meet Session Types 6 / 18

https://www.jperez.nl

Intersection Types

We define strict and multiset types by the grammar:

(Strict) σ, τ, δ ::= unit | π → σ

(Multiset) π ::= σk | ω

where σk stands for the intersection σ ∧ · · · ∧ σ (k times, for some k > 0)

Given type contexts Γ,∆, . . . (sets of type assignments x : π), type judgements
are of the form

Γ `M : σ

Pérez (Groningen, NL) Intersection Types Meet Session Types 7 / 18

https://www.jperez.nl

Well-Typed 6= Well-Formed

I Well-typed terms use resources properly

I Well-formed terms allow resource mismatches, which lead to failure

Well-typed processes are also well-formed (but not the other way around)

Pérez (Groningen, NL) Intersection Types Meet Session Types 8 / 18

https://www.jperez.nl

Well-Typed 6= Well-Formed

I Well-typed terms use resources properly

I Well-formed terms allow resource mismatches, which lead to failure

Well-typed processes are also well-formed (but not the other way around)

Pérez (Groningen, NL) Intersection Types Meet Session Types 8 / 18

https://www.jperez.nl

Sharing is Caring

I In the sharing calculus, denoted bλ ⊕, a variable can only appear once in a term
I Multiple occurrences of the same variable are “atomized”
I Sharing of variables ex occurring in M using x :

M [ex ← x]

I Examples:
λx .x1[x1 ← x] λx .x1 * x2 + [x1, x2 ← x]

I The shared variables ex can be empty:
M [← x] says that x does not share any variables in M .

Pérez (Groningen, NL) Intersection Types Meet Session Types 9 / 18

https://www.jperez.nl

Sharing is Caring

I In the sharing calculus, denoted bλ ⊕, a variable can only appear once in a term
I Multiple occurrences of the same variable are “atomized”
I Sharing of variables ex occurring in M using x :

M [ex ← x]

I Examples:
λx .x1[x1 ← x] λx .x1 * x2 + [x1, x2 ← x]

I The shared variables ex can be empty:
M [← x] says that x does not share any variables in M .

Pérez (Groningen, NL) Intersection Types Meet Session Types 9 / 18

https://www.jperez.nl

A π-calculus with non-deterministic sessions (sπ)

Fragment from Caires and Pérez (ESOP’21):

P ,Q ::= x [y].(P |Q) | x (y).P

| x .some; P | x .somew1,...,wn ; P

| x .none

| x [] | x ().P

| (νx)(P |Q)

| P ⊕Q | P |Q

| 0 | [x ↔ y]

Pérez (Groningen, NL) Intersection Types Meet Session Types 10 / 18

https://www.jperez.nl

Confluent Non-determinism and Failures in sπ

y1(z).y2(w).0

Letting Q = y1(z).y2(w).0, we have:

Confluent Non-determinism and Failures in sπ

x .some(y1,y2); y1(z).y2(w).0

Letting Q = y1(z).y2(w).0, we have:

Confluent Non-determinism and Failures in sπ

R = (νx)(x .some(y1,y2); y1(z).y2(w).0 | (x .some; P ⊕ x .none))

Letting Q = y1(z).y2(w).0, we have:

Confluent Non-determinism and Failures in sπ

R = (νx)(x .some(y1,y2); y1(z).y2(w).0 | (x .some; P ⊕ x .none))

≡ (νx)(x .some(y1,y2); y1(z).y2(w).0 | x .some; P)

⊕
(νx)(x .some(y1,y2); y1(z).y2(w).0 | x .none)

Letting Q = y1(z).y2(w).0, we have:

Confluent Non-determinism and Failures in sπ

R = (νx)(x .some(y1,y2); y1(z).y2(w).0 | (x .some; P ⊕ x .none))

≡ (νx)(x .some(y1,y2); y1(z).y2(w).0 | x .some; P)

⊕
(νx)(x .some(y1,y2); y1(z).y2(w).0 | x .none)

Letting Q = y1(z).y2(w).0, we have:

Session Types for sπ

Linear logic propositions as session types (cf. Caires & Pfenning, Wadler):

A,B ::= ⊥ (closed session)

| 1 (closed session)

| A⊗B (output A, continue as B)

| AOB (input A, continue as B)

| & A (may produce A)

| ⊕A (may consume A)

A duality relation on types/propositions connects complementary behaviors

Pérez (Groningen, NL) Intersection Types Meet Session Types 12 / 18

https://www.jperez.nl

The Translation J · Ku :
cλ ⊕ → sπ

Jx Ku = x .some; [x ↔ u]

Jλx .M [ex ← x]Ku = u .some; u(x).JM [ex ← x]Ku
JM (*N1 + · *N2+)Ku = (νv)(JM Kv | v .someu ,fv(B);

v [x].([v ↔ u] | J(*N1 + · *N2+)Kx))

⊕
(νv)(JM Kv | v .someu ,fv(B);

v [x].([v ↔ u] | J(*N2 + · *N1+)Kx))

JM [ex ← x]〈〈B/x 〉〉Ku =
M

Bi∈PER(B)

(νx)(JM [ex ← x]Ku | JBiKx)

Pérez (Groningen, NL) Intersection Types Meet Session Types 13 / 18

https://www.jperez.nl

The Translation J · Ku :
cλ ⊕ → sπ

Jx Ku = x .some; [x ↔ u]

Jλx .M [ex ← x]Ku = u .some; u(x).JM [ex ← x]Ku
JM (*N1 + · *N2+)Ku = (νv)(JM Kv | v .someu ,fv(B);

v [x].([v ↔ u] | J(*N1 + · *N2+)Kx))

⊕
(νv)(JM Kv | v .someu ,fv(B);

v [x].([v ↔ u] | J(*N2 + · *N1+)Kx))

JM [ex ← x]〈〈B/x 〉〉Ku =
M

Bi∈PER(B)

(νx)(JM [ex ← x]Ku | JBiKx)

Pérez (Groningen, NL) Intersection Types Meet Session Types 13 / 18

https://www.jperez.nl

The Translation J · Ku :
cλ ⊕ → sπ

Jx Ku = x .some; [x ↔ u]

Jλx .M [ex ← x]Ku = u .some; u(x).JM [ex ← x]Ku
JM (*N1 + · *N2+)Ku = (νv)(JM Kv | v .someu ,fv(B);

v [x].([v ↔ u] | J(*N1 + · *N2+)Kx))

⊕
(νv)(JM Kv | v .someu ,fv(B);

v [x].([v ↔ u] | J(*N2 + · *N1+)Kx))

JM [ex ← x]〈〈B/x 〉〉Ku =
M

Bi∈PER(B)

(νx)(JM [ex ← x]Ku | JBiKx)

Pérez (Groningen, NL) Intersection Types Meet Session Types 13 / 18

https://www.jperez.nl

The Translation J · Ku :
cλ ⊕ → sπ

Jx Ku = x .some; [x ↔ u]

Jλx .M [ex ← x]Ku = u .some; u(x).JM [ex ← x]Ku
JM (*N1 + · *N2+)Ku = (νv)(JM Kv | v .someu ,fv(B);

v [x].([v ↔ u] | J(*N1 + · *N2+)Kx))

⊕
(νv)(JM Kv | v .someu ,fv(B);

v [x].([v ↔ u] | J(*N2 + · *N1+)Kx))

JM [ex ← x]〈〈B/x 〉〉Ku =
M

Bi∈PER(B)

(νx)(JM [ex ← x]Ku | JBiKx)

Pérez (Groningen, NL) Intersection Types Meet Session Types 13 / 18

https://www.jperez.nl

The Translation J · Ku :
cλ ⊕ → sπ

Jx Ku = x .some; [x ↔ u]

Jλx .M [ex ← x]Ku = u .some; u(x).JM [ex ← x]Ku
JM (*N1 + · *N2+)Ku = (νv)(JM Kv | v .someu ,fv(B);

v [x].([v ↔ u] | J(*N1 + · *N2+)Kx))

⊕
(νv)(JM Kv | v .someu ,fv(B);

v [x].([v ↔ u] | J(*N2 + · *N1+)Kx))

JM [ex ← x]〈〈B/x 〉〉Ku =
M

Bi∈PER(B)

(νx)(JM [ex ← x]Ku | JBiKx)

Pérez (Groningen, NL) Intersection Types Meet Session Types 13 / 18

https://www.jperez.nl

The Translation J · Ku :
cλ ⊕ → sπ

Jx Ku = x .some; [x ↔ u]

Jλx .M [ex ← x]Ku = u .some; u(x).JM [ex ← x]Ku
JM (*N1 + · *N2+)Ku = (νv)(JM Kv | v .someu ,fv(B);

v [x].([v ↔ u] | J(*N1 + · *N2+)Kx))

⊕
(νv)(JM Kv | v .someu ,fv(B);

v [x].([v ↔ u] | J(*N2 + · *N1+)Kx))

JM [ex ← x]〈〈B/x 〉〉Ku =
M

Bi∈PER(B)

(νx)(JM [ex ← x]Ku | JBiKx)

Pérez (Groningen, NL) Intersection Types Meet Session Types 13 / 18

https://www.jperez.nl

The Translation J · Ku :
cλ ⊕ → sπ

JM [x1, x2 ← x]Ku = x .some.x [y1].(y1.some∅; y1(); 0
| x .some; x .someu ,(fv(M)\x1,··· ,xn); x (x1).

x .some.x [y2].(y2.some∅; y2(); 0
| x .some; x .someu ,(fv(M)\x2); x (x2)

.x .some; x [y3].(y3.someu ,fv(M); y3(); JM Ku | x .none)))

JM [← x]Ku = x .some.x [yi].(yi .someu ,fv(M); yi(); JM Ku | x .none)

Pérez (Groningen, NL) Intersection Types Meet Session Types 13 / 18

https://www.jperez.nl

The Translation J · Ku :
cλ ⊕ → sπ

JM [x1, x2 ← x]Ku = x .some.x [y1].(y1.some∅; y1(); 0
| x .some; x .someu ,(fv(M)\x1,··· ,xn); x (x1).

x .some.x [y2].(y2.some∅; y2(); 0
| x .some; x .someu ,(fv(M)\x2); x (x2)

.x .some; x [y3].(y3.someu ,fv(M); y3(); JM Ku | x .none)))

JM [← x]Ku = x .some.x [yi].(yi .someu ,fv(M); yi(); JM Ku | x .none)

Pérez (Groningen, NL) Intersection Types Meet Session Types 13 / 18

https://www.jperez.nl

The Translation J · Ku :
cλ ⊕ → sπ

J *M + ·BKx = x .somefv(*M +·B); x (yi).x .someyi ,fv(*M +·B); x .some; x [xi]

.(xi .somefv(M); JM Kxi
| JBKx | yi .none)

J1Kx = x .some∅; x (yn).(yn .some; yn [] | x .some∅; x .none)

JM+ NKu = JMKu ⊕ JNKu
Jfailx1,x2Ku = u .none | x1.none | x2.none

Pérez (Groningen, NL) Intersection Types Meet Session Types 13 / 18

https://www.jperez.nl

The Translation at Work

(λa .a) *M +

a〈〈*M +/a〉〉

M 〈〈1/a〉〉

M

≤

The Translation at Work

(λa .a1[a1 ← a]) *M +

a1[a1 ← a]〈〈*M +/a〉〉

M [← a]〈〈1/a〉〉

M

≤

The Translation at Work

(λa .a1[a1 ← a]) *M +
(νv)(v .some; v(x).Ja1[a1 ← a]Kv

| v .someu ,b; v [x].([v ↔ u] | J *M + Kx)

a1[a1 ← a]〈〈*M +/a〉〉

M [← a]〈〈1/a〉〉

M

J · Ku

≤

The Translation at Work

(λa .a1[a1 ← a]) *M +
(νv)(v .some; v(x).Ja1[a1 ← a]Kv

| v .someu ,b; v [x].([v ↔ u] | J *M + Kx)

a1[a1 ← a]〈〈*M +/a〉〉 (νa)(Ja1[a1 ← a]Ku | J *M + Ka)

M [← a]〈〈1/a〉〉

M

J · Ku

J · Ku

≤

The Translation at Work

(λa .a1[a1 ← a]) *M +
(νv)(v .some; v(x).Ja1[a1 ← a]Kv

| v .someu ,b; v [x].([v ↔ u] | J *M + Kx)

a1[a1 ← a]〈〈*M +/a〉〉 (νa)(Ja1[a1 ← a]Ku | J *M + Ka)

M [← a]〈〈1/a〉〉

M JM Ku

J · Ku

J · Ku

J · Ku

≤

The Translation at Work: Failure

(λa .a)1

a〈〈1/a〉〉

fail∅

Pérez (Groningen, NL) Intersection Types Meet Session Types 15 / 18

https://www.jperez.nl

The Translation at Work: Failure

(λa .a1[a1 ← a])1

a1[a1 ← a]〈〈1/a〉〉

fail∅

Pérez (Groningen, NL) Intersection Types Meet Session Types 15 / 18

https://www.jperez.nl

The Translation at Work: Failure

(λa .a1[a1 ← a])1
(νv)(v .some; v(x).Ja1[a1 ← a]Kv

| v .someu ,b; v [x].([v ↔ u] | J1Kx)

a1[a1 ← a]〈〈1/a〉〉

fail∅

J · Ku

Pérez (Groningen, NL) Intersection Types Meet Session Types 15 / 18

https://www.jperez.nl

The Translation at Work: Failure

(λa .a1[a1 ← a])1
(νv)(v .some; v(x).Ja1[a1 ← a]Kv

| v .someu ,b; v [x].([v ↔ u] | J1Kx)

a1[a1 ← a]〈〈1/a〉〉 (νa)(Ja1[a1 ← a]Ku | J1Ka)

fail∅

J · Ku

J · Ku

Pérez (Groningen, NL) Intersection Types Meet Session Types 15 / 18

https://www.jperez.nl

The Translation at Work: Failure

(λa .a1[a1 ← a])1
(νv)(v .some; v(x).Ja1[a1 ← a]Kv

| v .someu ,b; v [x].([v ↔ u] | J1Kx)

a1[a1 ← a]〈〈1/a〉〉 (νa)(Ja1[a1 ← a]Ku | J1Ka)

fail∅ u .none

J · Ku

J · Ku

J · Ku

Pérez (Groningen, NL) Intersection Types Meet Session Types 15 / 18

https://www.jperez.nl

FSCD’21-LMCS’23
I λ ⊕ and bλ ⊕: subject reduction / subject expansion (for well-typed terms)
I Translation of λ ⊕ into bλ ⊕ (variable atomization)
I Translation of intersection types (for bλ ⊕) into session types (for sπ)

TYPES’21
I Extension of λ ⊕ and bλ ⊕ with unrestricted resources
I Relies on client and servers in sπ (typable via ?A and !A, copying semantics)

APLAS’23
I Variants of λ ⊕ and sπ with non-confluent non-determinism (linear resources)
I A lazy semantics for commitment; translation of terms/types unchanged

MFPS’24
I λ ⊕ and sπ with non-confluent non-determinism (with unrestricted resources)
I An eager semantics for commitment; lazy and eager translations compared

https://doi.org/10.46298/lmcs-19(4:1)2023
https://doi.org/10.4230/LIPIcs.TYPES.2021.11
https://doi.org/10.1007/978-981-99-8311-7_6
https://oxford24.github.io/assets/mfps-papers/MFPS24-9.pdf

FSCD’21-LMCS’23
I λ ⊕ and bλ ⊕: subject reduction / subject expansion (for well-typed terms)
I Translation of λ ⊕ into bλ ⊕ (variable atomization)
I Translation of intersection types (for bλ ⊕) into session types (for sπ)

TYPES’21
I Extension of λ ⊕ and bλ ⊕ with unrestricted resources
I Relies on client and servers in sπ (typable via ?A and !A, copying semantics)

APLAS’23
I Variants of λ ⊕ and sπ with non-confluent non-determinism (linear resources)
I A lazy semantics for commitment; translation of terms/types unchanged

MFPS’24
I λ ⊕ and sπ with non-confluent non-determinism (with unrestricted resources)
I An eager semantics for commitment; lazy and eager translations compared

https://doi.org/10.46298/lmcs-19(4:1)2023
https://doi.org/10.4230/LIPIcs.TYPES.2021.11
https://doi.org/10.1007/978-981-99-8311-7_6
https://oxford24.github.io/assets/mfps-papers/MFPS24-9.pdf

FSCD’21-LMCS’23
I λ ⊕ and bλ ⊕: subject reduction / subject expansion (for well-typed terms)
I Translation of λ ⊕ into bλ ⊕ (variable atomization)
I Translation of intersection types (for bλ ⊕) into session types (for sπ)

TYPES’21
I Extension of λ ⊕ and bλ ⊕ with unrestricted resources
I Relies on client and servers in sπ (typable via ?A and !A, copying semantics)

APLAS’23
I Variants of λ ⊕ and sπ with non-confluent non-determinism (linear resources)
I A lazy semantics for commitment; translation of terms/types unchanged

MFPS’24
I λ ⊕ and sπ with non-confluent non-determinism (with unrestricted resources)
I An eager semantics for commitment; lazy and eager translations compared

https://doi.org/10.46298/lmcs-19(4:1)2023
https://doi.org/10.4230/LIPIcs.TYPES.2021.11
https://doi.org/10.1007/978-981-99-8311-7_6
https://oxford24.github.io/assets/mfps-papers/MFPS24-9.pdf

FSCD’21-LMCS’23
I λ ⊕ and bλ ⊕: subject reduction / subject expansion (for well-typed terms)
I Translation of λ ⊕ into bλ ⊕ (variable atomization)
I Translation of intersection types (for bλ ⊕) into session types (for sπ)

TYPES’21
I Extension of λ ⊕ and bλ ⊕ with unrestricted resources
I Relies on client and servers in sπ (typable via ?A and !A, copying semantics)

APLAS’23
I Variants of λ ⊕ and sπ with non-confluent non-determinism (linear resources)
I A lazy semantics for commitment; translation of terms/types unchanged

MFPS’24
I λ ⊕ and sπ with non-confluent non-determinism (with unrestricted resources)
I An eager semantics for commitment; lazy and eager translations compared

https://doi.org/10.46298/lmcs-19(4:1)2023
https://doi.org/10.4230/LIPIcs.TYPES.2021.11
https://doi.org/10.1007/978-981-99-8311-7_6
https://oxford24.github.io/assets/mfps-papers/MFPS24-9.pdf

Concluding Remarks
I A glimpse at a series of concurrent interpretations (governed by session types)

of resource λ-calculi with non-idempotent intersection types
I Reconciling non-determinism, failures, and confluence across functional and

concurrent paradigms
I Focus on a basic setting with linear resources and confluent non-determinism.

Extensions:
I Unrestricted resources
I Non-confluent non-determinism
I Lazy/eager semantics for typed processes

Current/future work:
I Recursive types
I Quantitative properties for typed process behaviors

Pérez (Groningen, NL) Intersection Types Meet Session Types 17 / 18

https://www.jperez.nl

Concluding Remarks
I A glimpse at a series of concurrent interpretations (governed by session types)

of resource λ-calculi with non-idempotent intersection types
I Reconciling non-determinism, failures, and confluence across functional and

concurrent paradigms
I Focus on a basic setting with linear resources and confluent non-determinism.

Extensions:
I Unrestricted resources
I Non-confluent non-determinism
I Lazy/eager semantics for typed processes

Current/future work:
I Recursive types
I Quantitative properties for typed process behaviors

Pérez (Groningen, NL) Intersection Types Meet Session Types 17 / 18

https://www.jperez.nl

Intersection Types Meet Session Types
Reconciling Two Different Views on Computational Resources

Jorge A. Pérez
University of Groningen, The Netherlands

ITRS 2024 - Tallinn

https://www.jperez.nl

