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This Talk

A brief overview of formal connections between intersection types with session types
for concurrency (FSCD’21, TYPES’21, APLAS’23, MFPS’24).

I Non-idempotent intersection types and session types with Curry-Howard
foundations (aka ‘propositions-as-sessions’)

I Two different approaches on resource control:
I In λ: Resources are terms, whose types can ensure quantitative properties
I In π: Resources are channels, whose types enforce linear usage for correctness

I Key unifying aspects: non-determinism, confluence / commitment, failures
I Relative expressiveness: Typed λ-calculi translated into session-typed π-calculi
I A concurrent interpretation of intersection types, with strong correctness

properties: static (type preservation) and dynamic (operational correspondence)
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Our Translation, In a Nutshell (FSCD’21 / LMCS’23)

Source: λ ⊕, a resource λ-calculus with non-determinism and failure
I Applications M B , where B is a bag of terms, to be non-determically fetched
I Failure occurs when a bag’s size doesn’t match the variable occurrences
I Intersection types measure the size of a bag and count variable occurrences

I Expressions can be well-typed (fail-free) or well-formed (fail-prone)

Target: sπ, a session-typed π-calculus with non-deterministically available behaviors
I Session types: The protocols that names of a process must respect
I Under ‘propositions-as-sessions’, session type = linear logic proposition
I Non-deterministic processes, whose protocols may proceed as intended or fail
I Well-typed processes respect their types, with confluence and deadlock-freedom
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Our Translation, In a Nutshell (FSCD’21 / LMCS’23)
Structly speaking, two translations:

1. We first translate λ ⊕ into a resource λ-calculus with sharing constructs
A direct translation, useful to make different variable occurrences explicit

2. The translation into processes leverages sharing to enforce linearity; failure for
terms accounted as non-available protocols

Pérez (Groningen, NL) Intersection Types Meet Session Types 5 / 18

https://www.jperez.nl


A resource λ-calculus with failure (λ ⊕)
Syntax:

(Terms) M ,N ,L ::= x | λx .M | (M B) | M 〈〈B/x 〉〉 | failex
(Bags) A,B ::= 1 | *M + | A ·B
(Expressions) M,N,L ::= M | M+ N

Reduction (Excerpt):
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Intersection Types

We define strict and multiset types by the grammar:

(Strict) σ, τ, δ ::= unit | π → σ

(Multiset) π ::= σk | ω

where σk stands for the intersection σ ∧ · · · ∧ σ (k times, for some k > 0)

Given type contexts Γ,∆, . . . (sets of type assignments x : π), type judgements
are of the form

Γ `M : σ
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Well-Typed 6= Well-Formed

I Well-typed terms use resources properly

I Well-formed terms allow resource mismatches, which lead to failure

Well-typed processes are also well-formed (but not the other way around)
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Sharing is Caring

I In the sharing calculus, denoted bλ ⊕, a variable can only appear once in a term
I Multiple occurrences of the same variable are “atomized”
I Sharing of variables ex occurring in M using x :

M [ex ← x ]

I Examples:
λx .x1[x1 ← x ] λx .x1 * x2 + [x1, x2 ← x ]

I The shared variables ex can be empty:
M [← x ] says that x does not share any variables in M .
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A π-calculus with non-deterministic sessions (sπ)

Fragment from Caires and Pérez (ESOP’21):

P ,Q ::= x [y ].(P |Q) | x (y).P

| x .some; P | x .somew1,...,wn ; P

| x .none

| x [ ] | x ( ).P

| (νx )(P |Q)

| P ⊕Q | P |Q

| 0 | [x ↔ y ]
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Confluent Non-determinism and Failures in sπ

y1(z ).y2(w).0

Letting Q = y1(z ).y2(w).0, we have:
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Confluent Non-determinism and Failures in sπ

R = (νx )(x .some(y1,y2); y1(z ).y2(w).0 | (x .some; P ⊕ x .none))

≡ (νx )(x .some(y1,y2); y1(z ).y2(w).0 | x .some; P)

⊕
(νx )(x .some(y1,y2); y1(z ).y2(w).0 | x .none)

Letting Q = y1(z ).y2(w).0, we have:



Confluent Non-determinism and Failures in sπ

R = (νx )(x .some(y1,y2); y1(z ).y2(w).0 | (x .some; P ⊕ x .none))

≡ (νx )(x .some(y1,y2); y1(z ).y2(w).0 | x .some; P)

⊕
(νx )(x .some(y1,y2); y1(z ).y2(w).0 | x .none)

Letting Q = y1(z ).y2(w).0, we have:



Session Types for sπ

Linear logic propositions as session types (cf. Caires & Pfenning, Wadler):

A,B ::= ⊥ (closed session)

| 1 (closed session)

| A⊗B (output A, continue as B)

| AOB (input A, continue as B)

| & A (may produce A)

| ⊕A (may consume A)

A duality relation on types/propositions connects complementary behaviors
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The Translation J · Ku :
cλ ⊕ → sπ

Jx Ku = x .some; [x ↔ u ]

Jλx .M [ex ← x ]Ku = u .some; u(x ).JM [ex ← x ]Ku
JM (*N1 + · *N2+)Ku = (νv)(JM Kv | v .someu ,fv(B);

v [x ].([v ↔ u ] | J(*N1 + · *N2+)Kx ))

⊕
(νv)(JM Kv | v .someu ,fv(B);

v [x ].([v ↔ u ] | J(*N2 + · *N1+)Kx ))

JM [ex ← x ]〈〈B/x 〉〉Ku =
M

Bi∈PER(B)

(νx )(JM [ex ← x ]Ku | JBiKx )
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The Translation J · Ku :
cλ ⊕ → sπ

JM [x1, x2 ← x ]Ku = x .some.x [y1].(y1.some∅; y1( ); 0
| x .some; x .someu ,(fv(M )\x1,··· ,xn ); x (x1).

x .some.x [y2].(y2.some∅; y2( ); 0
| x .some; x .someu ,(fv(M )\x2); x (x2)

.x .some; x [y3].(y3.someu ,fv(M ); y3( ); JM Ku | x .none) ))

JM [← x ]Ku = x .some.x [yi ].(yi .someu ,fv(M ); yi( ); JM Ku | x .none)
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The Translation J · Ku :
cλ ⊕ → sπ

J *M + ·BKx = x .somefv(*M +·B); x (yi).x .someyi ,fv(*M +·B); x .some; x [xi ]

.(xi .somefv(M ); JM Kxi
| JBKx | yi .none)

J1Kx = x .some∅; x (yn).(yn .some; yn [ ] | x .some∅; x .none)

JM+ NKu = JMKu ⊕ JNKu
Jfailx1,x2Ku = u .none | x1.none | x2.none
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The Translation at Work

(λa .a) *M +

a〈〈*M +/a〉〉

M 〈〈1/a〉〉

M

≤



The Translation at Work

(λa .a1[a1 ← a ]) *M +

a1[a1 ← a ]〈〈*M +/a〉〉

M [← a ]〈〈1/a〉〉

M

≤



The Translation at Work

(λa .a1[a1 ← a ]) *M +
(νv)(v .some; v(x ).Ja1[a1 ← a ]Kv

| v .someu ,b; v [x ].([v ↔ u ] | J *M + Kx )

a1[a1 ← a ]〈〈*M +/a〉〉

M [← a ]〈〈1/a〉〉

M

J · Ku

≤



The Translation at Work

(λa .a1[a1 ← a ]) *M +
(νv)(v .some; v(x ).Ja1[a1 ← a ]Kv

| v .someu ,b; v [x ].([v ↔ u ] | J *M + Kx )

a1[a1 ← a ]〈〈*M +/a〉〉 (νa)(Ja1[a1 ← a ]Ku | J *M + Ka)

M [← a ]〈〈1/a〉〉

M

J · Ku

J · Ku

≤



The Translation at Work

(λa .a1[a1 ← a ]) *M +
(νv)(v .some; v(x ).Ja1[a1 ← a ]Kv

| v .someu ,b; v [x ].([v ↔ u ] | J *M + Kx )

a1[a1 ← a ]〈〈*M +/a〉〉 (νa)(Ja1[a1 ← a ]Ku | J *M + Ka)

M [← a ]〈〈1/a〉〉

M JM Ku

J · Ku

J · Ku

J · Ku

≤



The Translation at Work: Failure

(λa .a)1

a〈〈1/a〉〉

fail∅
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The Translation at Work: Failure
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The Translation at Work: Failure

(λa .a1[a1 ← a ])1
(νv)(v .some; v(x ).Ja1[a1 ← a ]Kv

| v .someu ,b; v [x ].([v ↔ u ] | J1Kx )

a1[a1 ← a ]〈〈1/a〉〉

fail∅

J · Ku
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The Translation at Work: Failure

(λa .a1[a1 ← a ])1
(νv)(v .some; v(x ).Ja1[a1 ← a ]Kv

| v .someu ,b; v [x ].([v ↔ u ] | J1Kx )
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The Translation at Work: Failure

(λa .a1[a1 ← a ])1
(νv)(v .some; v(x ).Ja1[a1 ← a ]Kv

| v .someu ,b; v [x ].([v ↔ u ] | J1Kx )

a1[a1 ← a ]〈〈1/a〉〉 (νa)(Ja1[a1 ← a ]Ku | J1Ka)

fail∅ u .none

J · Ku

J · Ku

J · Ku
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FSCD’21-LMCS’23
I λ ⊕ and bλ ⊕: subject reduction / subject expansion (for well-typed terms)
I Translation of λ ⊕ into bλ ⊕ (variable atomization)
I Translation of intersection types (for bλ ⊕) into session types (for sπ)

TYPES’21
I Extension of λ ⊕ and bλ ⊕ with unrestricted resources
I Relies on client and servers in sπ (typable via ?A and !A, copying semantics)

APLAS’23
I Variants of λ ⊕ and sπ with non-confluent non-determinism (linear resources)
I A lazy semantics for commitment; translation of terms/types unchanged

MFPS’24
I λ ⊕ and sπ with non-confluent non-determinism (with unrestricted resources)
I An eager semantics for commitment; lazy and eager translations compared
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Concluding Remarks
I A glimpse at a series of concurrent interpretations (governed by session types)

of resource λ-calculi with non-idempotent intersection types
I Reconciling non-determinism, failures, and confluence across functional and

concurrent paradigms
I Focus on a basic setting with linear resources and confluent non-determinism.

Extensions:
I Unrestricted resources
I Non-confluent non-determinism
I Lazy/eager semantics for typed processes

Current/future work:
I Recursive types
I Quantitative properties for typed process behaviors
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