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The context of the problem

Programmers do not want to write a lot.

Strongly typed languages impair productivity
[Hannenberg’210].
A study on Groovy [Souza and Figueiredo’14] showed that

types in scripting scenarios are not used,
types in structured programming are used.

Typing with sophisticated properties requires writing a lot.
[later studies by Hannenberg’s group]

Question:

What typing disciplines support
no types in scripts and
sophisticated types in complex programs?
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A proposed system syntax

Traditional intersection types

σ, τ ::= α | σ ∧ τ | σ → τ

Slightly non-standard λ-terms

M,N ::= xσ | x | λx :σ.M | λx.M | MN

x : σ is obligatory in λ when σ contains intersection.
Investigations on systematic type erasure in System F
show that omitting types in λ leads to undecidability
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A proposed system rules

(Var)
Γ, x : σ ⊢ xσ : σ

σ ∈ T→
(VarS)

Γ, x : σ ⊢ x : σ

Γ, x : σ ⊢ M : τ
(→ I)

Γ ⊢ λx :σ.M : σ → τ

Γ, x : σ ⊢ M : τ σ ∈ T→
(→ IS)

Γ ⊢ λx.M : σ → τ

Γ ⊢ M : σ → τ Γ ⊢ N : σ
(→ E)

Γ ⊢ MN : τ

Γ ⊢ M : σ ∧ τ
(∧E1)

Γ ⊢ M : σ

Γ ⊢ M : σ ∧ τ
(∧E2)

Γ ⊢ M : τ

Aleksy Schubert Modest annotations with intersection types



A proposed system rules

(Var)
Γ, x : σ ⊢ xσ : σ

σ ∈ T→
(VarS)

Γ, x : σ ⊢ x : σ

Γ, x : σ ⊢ M : τ
(→ I)

Γ ⊢ λx :σ.M : σ → τ

Γ, x : σ ⊢ M : τ σ ∈ T→
(→ IS)

Γ ⊢ λx.M : σ → τ

Γ ⊢ M : σ → τ Γ ⊢ N : σ
(→ E)

Γ ⊢ MN : τ

Γ ⊢ M : σ ∧ τ
(∧E1)

Γ ⊢ M : σ

Γ ⊢ M : σ ∧ τ
(∧E2)

Γ ⊢ M : τ

Aleksy Schubert Modest annotations with intersection types



A proposed system rules

(Var)
Γ, x : σ ⊢ xσ : σ

σ ∈ T→
(VarS)

Γ, x : σ ⊢ x : σ

Γ, x : σ ⊢ M : τ
(→ I)

Γ ⊢ λx :σ.M : σ → τ

Γ, x : σ ⊢ M : τ σ ∈ T→
(→ IS)

Γ ⊢ λx.M : σ → τ

Γ ⊢ M : σ → τ Γ ⊢ N : σ
(→ E)

Γ ⊢ MN : τ

Γ ⊢ M : σ ∧ τ
(∧E1)

Γ ⊢ M : σ

Γ ⊢ M : σ ∧ τ
(∧E2)

Γ ⊢ M : τ

Aleksy Schubert Modest annotations with intersection types



Comments on the system design

The system is based on the Church style ITD
[Liquori and Ronchi Della Rocca’07].

(∧ I) rule is not included [Kurata and Takahashi’95]

Can placement of the rule be automatically and efficiently
inferred?
Automatic introduction may be complicated to understand.
It may trigger intersection types for variables without type
annotations.
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Decidability of the type reconstruction

Generation of unification constraints.

Constraint use a special kind of second-order variables.
Reduction algorithm to solve constraints.
One needs an additional ordering to solve the constraints.
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Projection variables

A substitution S assigns to a second-order projection variable F
expressions

A,B := □ | ■ | A ∧ B

The result of application of the substitution to an expression Fσ
is A(σ) where

□(σ) = σ,
■(σ) is undefined,
A0 ∧ A1(σ0 ∧ σ1) = Ai(σi) in case A1−i(σ1−1) is undefined for
i ∈ {0, 1},
A0 ∧ A1(σ0 ∧ σ1) = A0(σ0) ∧ A1(σ1) in case Ai(σi) is defined
for all i ∈ {0, 1},
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Constraint generation

Given Γ, M we define the function Constr(Γ;M) by induction on
M as follows.

1 Constr(Γ; xσ) = {Γ(x) .
= σ, σ

.
= Xx},

2 Constr(Γ; x) = {Γ(x) .
= X→

x },

3 Constr(Γ;MN; X⃗) =
let EM = Constr(Γ;M) and EN = Constr(Γ;N)
in {FM(XM)

.
= FN(XN) → XMN} ∪ EM ∪ EN ,

4 Constr(Γ;λx :σ.M) = let EM = Constr(Γ, x :σ;M)
in {Xλx:σ.M

.
= σ → XM} ∪ EM,

5 Constr(Γ;λx.M) = let EM = Constr(Γ, x : X→
x ;M)

in {Xλx.M
.
= X→

x → XM} ∪ EM.
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Conclusions

Explicit intersection types and implicit simple types lead to
decidable type-checking, type reconstruction.
What is the exact complexity?
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The End
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