
Aleksy Schubert Modest annotations with intersection types

Modest annotations with intersection types

Aleksy Schubert

Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw

9th of July, 2024

The context of the problem

Programmers do not want to write a lot.

Strongly typed languages impair productivity
[Hannenberg’210].
A study on Groovy [Souza and Figueiredo’14] showed that

types in scripting scenarios are not used,
types in structured programming are used.

Typing with sophisticated properties requires writing a lot.
[later studies by Hannenberg’s group]

Question:

What typing disciplines support
no types in scripts and
sophisticated types in complex programs?

Aleksy Schubert Modest annotations with intersection types

The context of the problem

Programmers do not want to write a lot.
Strongly typed languages impair productivity
[Hannenberg’210].

A study on Groovy [Souza and Figueiredo’14] showed that

types in scripting scenarios are not used,
types in structured programming are used.

Typing with sophisticated properties requires writing a lot.
[later studies by Hannenberg’s group]

Question:

What typing disciplines support
no types in scripts and
sophisticated types in complex programs?

Aleksy Schubert Modest annotations with intersection types

The context of the problem

Programmers do not want to write a lot.
Strongly typed languages impair productivity
[Hannenberg’210].
A study on Groovy [Souza and Figueiredo’14] showed that

types in scripting scenarios are not used,
types in structured programming are used.

Typing with sophisticated properties requires writing a lot.
[later studies by Hannenberg’s group]

Question:

What typing disciplines support
no types in scripts and
sophisticated types in complex programs?

Aleksy Schubert Modest annotations with intersection types

The context of the problem

Programmers do not want to write a lot.
Strongly typed languages impair productivity
[Hannenberg’210].
A study on Groovy [Souza and Figueiredo’14] showed that

types in scripting scenarios are not used,

types in structured programming are used.

Typing with sophisticated properties requires writing a lot.
[later studies by Hannenberg’s group]

Question:

What typing disciplines support
no types in scripts and
sophisticated types in complex programs?

Aleksy Schubert Modest annotations with intersection types

The context of the problem

Programmers do not want to write a lot.
Strongly typed languages impair productivity
[Hannenberg’210].
A study on Groovy [Souza and Figueiredo’14] showed that

types in scripting scenarios are not used,
types in structured programming are used.

Typing with sophisticated properties requires writing a lot.
[later studies by Hannenberg’s group]

Question:

What typing disciplines support
no types in scripts and
sophisticated types in complex programs?

Aleksy Schubert Modest annotations with intersection types

The context of the problem

Programmers do not want to write a lot.
Strongly typed languages impair productivity
[Hannenberg’210].
A study on Groovy [Souza and Figueiredo’14] showed that

types in scripting scenarios are not used,
types in structured programming are used.

Typing with sophisticated properties requires writing a lot.
[later studies by Hannenberg’s group]

Question:

What typing disciplines support
no types in scripts and
sophisticated types in complex programs?

Aleksy Schubert Modest annotations with intersection types

The context of the problem

Programmers do not want to write a lot.
Strongly typed languages impair productivity
[Hannenberg’210].
A study on Groovy [Souza and Figueiredo’14] showed that

types in scripting scenarios are not used,
types in structured programming are used.

Typing with sophisticated properties requires writing a lot.
[later studies by Hannenberg’s group]

Question:

What typing disciplines support
no types in scripts and
sophisticated types in complex programs?

Aleksy Schubert Modest annotations with intersection types

A proposed system syntax

Traditional intersection types

σ, τ ::= α | σ ∧ τ | σ → τ

Slightly non-standard λ-terms

M,N ::= xσ | x | λx :σ.M | λx.M | MN

x : σ is obligatory in λ when σ contains intersection.
Investigations on systematic type erasure in System F
show that omitting types in λ leads to undecidability

Aleksy Schubert Modest annotations with intersection types

A proposed system syntax

Traditional intersection types

σ, τ ::= α | σ ∧ τ | σ → τ

Slightly non-standard λ-terms

M,N ::= xσ | x | λx :σ.M | λx.M | MN

x : σ is obligatory in λ when σ contains intersection.
Investigations on systematic type erasure in System F
show that omitting types in λ leads to undecidability

Aleksy Schubert Modest annotations with intersection types

A proposed system syntax

Traditional intersection types

σ, τ ::= α | σ ∧ τ | σ → τ

Slightly non-standard λ-terms

M,N ::= xσ | x | λx :σ.M | λx.M | MN

x : σ is obligatory in λ when σ contains intersection.

Investigations on systematic type erasure in System F
show that omitting types in λ leads to undecidability

Aleksy Schubert Modest annotations with intersection types

A proposed system syntax

Traditional intersection types

σ, τ ::= α | σ ∧ τ | σ → τ

Slightly non-standard λ-terms

M,N ::= xσ | x | λx :σ.M | λx.M | MN

x : σ is obligatory in λ when σ contains intersection.
Investigations on systematic type erasure in System F
show that omitting types in λ leads to undecidability

Aleksy Schubert Modest annotations with intersection types

A proposed system rules

(Var)
Γ, x : σ ⊢ xσ : σ

σ ∈ T→
(VarS)

Γ, x : σ ⊢ x : σ

Γ, x : σ ⊢ M : τ
(→ I)

Γ ⊢ λx :σ.M : σ → τ

Γ, x : σ ⊢ M : τ σ ∈ T→
(→ IS)

Γ ⊢ λx.M : σ → τ

Γ ⊢ M : σ → τ Γ ⊢ N : σ
(→ E)

Γ ⊢ MN : τ

Γ ⊢ M : σ ∧ τ
(∧E1)

Γ ⊢ M : σ

Γ ⊢ M : σ ∧ τ
(∧E2)

Γ ⊢ M : τ

Aleksy Schubert Modest annotations with intersection types

A proposed system rules

(Var)
Γ, x : σ ⊢ xσ : σ

σ ∈ T→
(VarS)

Γ, x : σ ⊢ x : σ

Γ, x : σ ⊢ M : τ
(→ I)

Γ ⊢ λx :σ.M : σ → τ

Γ, x : σ ⊢ M : τ σ ∈ T→
(→ IS)

Γ ⊢ λx.M : σ → τ

Γ ⊢ M : σ → τ Γ ⊢ N : σ
(→ E)

Γ ⊢ MN : τ

Γ ⊢ M : σ ∧ τ
(∧E1)

Γ ⊢ M : σ

Γ ⊢ M : σ ∧ τ
(∧E2)

Γ ⊢ M : τ

Aleksy Schubert Modest annotations with intersection types

A proposed system rules

(Var)
Γ, x : σ ⊢ xσ : σ

σ ∈ T→
(VarS)

Γ, x : σ ⊢ x : σ

Γ, x : σ ⊢ M : τ
(→ I)

Γ ⊢ λx :σ.M : σ → τ

Γ, x : σ ⊢ M : τ σ ∈ T→
(→ IS)

Γ ⊢ λx.M : σ → τ

Γ ⊢ M : σ → τ Γ ⊢ N : σ
(→ E)

Γ ⊢ MN : τ

Γ ⊢ M : σ ∧ τ
(∧E1)

Γ ⊢ M : σ

Γ ⊢ M : σ ∧ τ
(∧E2)

Γ ⊢ M : τ

Aleksy Schubert Modest annotations with intersection types

Comments on the system design

The system is based on the Church style ITD
[Liquori and Ronchi Della Rocca’07].

(∧ I) rule is not included [Kurata and Takahashi’95]

Can placement of the rule be automatically and efficiently
inferred?
Automatic introduction may be complicated to understand.
It may trigger intersection types for variables without type
annotations.

Aleksy Schubert Modest annotations with intersection types

Comments on the system design

The system is based on the Church style ITD
[Liquori and Ronchi Della Rocca’07].
(∧ I) rule is not included [Kurata and Takahashi’95]

Can placement of the rule be automatically and efficiently
inferred?
Automatic introduction may be complicated to understand.
It may trigger intersection types for variables without type
annotations.

Aleksy Schubert Modest annotations with intersection types

Comments on the system design

The system is based on the Church style ITD
[Liquori and Ronchi Della Rocca’07].
(∧ I) rule is not included [Kurata and Takahashi’95]

Can placement of the rule be automatically and efficiently
inferred?

Automatic introduction may be complicated to understand.
It may trigger intersection types for variables without type
annotations.

Aleksy Schubert Modest annotations with intersection types

Comments on the system design

The system is based on the Church style ITD
[Liquori and Ronchi Della Rocca’07].
(∧ I) rule is not included [Kurata and Takahashi’95]

Can placement of the rule be automatically and efficiently
inferred?
Automatic introduction may be complicated to understand.

It may trigger intersection types for variables without type
annotations.

Aleksy Schubert Modest annotations with intersection types

Comments on the system design

The system is based on the Church style ITD
[Liquori and Ronchi Della Rocca’07].
(∧ I) rule is not included [Kurata and Takahashi’95]

Can placement of the rule be automatically and efficiently
inferred?
Automatic introduction may be complicated to understand.
It may trigger intersection types for variables without type
annotations.

Aleksy Schubert Modest annotations with intersection types

Decidability of the type reconstruction

Generation of unification constraints.

Constraint use a special kind of second-order variables.
Reduction algorithm to solve constraints.
One needs an additional ordering to solve the constraints.

Aleksy Schubert Modest annotations with intersection types

Decidability of the type reconstruction

Generation of unification constraints.
Constraint use a special kind of second-order variables.

Reduction algorithm to solve constraints.
One needs an additional ordering to solve the constraints.

Aleksy Schubert Modest annotations with intersection types

Decidability of the type reconstruction

Generation of unification constraints.
Constraint use a special kind of second-order variables.
Reduction algorithm to solve constraints.

One needs an additional ordering to solve the constraints.

Aleksy Schubert Modest annotations with intersection types

Decidability of the type reconstruction

Generation of unification constraints.
Constraint use a special kind of second-order variables.
Reduction algorithm to solve constraints.
One needs an additional ordering to solve the constraints.

Aleksy Schubert Modest annotations with intersection types

Projection variables

A substitution S assigns to a second-order projection variable F
expressions

A,B := □ | ■ | A ∧ B

The result of application of the substitution to an expression Fσ
is A(σ) where

□(σ) = σ,
■(σ) is undefined,
A0 ∧ A1(σ0 ∧ σ1) = Ai(σi) in case A1−i(σ1−1) is undefined for
i ∈ {0, 1},
A0 ∧ A1(σ0 ∧ σ1) = A0(σ0) ∧ A1(σ1) in case Ai(σi) is defined
for all i ∈ {0, 1},

Aleksy Schubert Modest annotations with intersection types

Constraint generation

Given Γ, M we define the function Constr(Γ;M) by induction on
M as follows.

1 Constr(Γ; xσ) = {Γ(x) .
= σ, σ

.
= Xx},

2 Constr(Γ; x) = {Γ(x) .
= X→

x },

3 Constr(Γ;MN; X⃗) =
let EM = Constr(Γ;M) and EN = Constr(Γ;N)
in {FM(XM)

.
= FN(XN) → XMN} ∪ EM ∪ EN ,

4 Constr(Γ;λx :σ.M) = let EM = Constr(Γ, x :σ;M)
in {Xλx:σ.M

.
= σ → XM} ∪ EM,

5 Constr(Γ;λx.M) = let EM = Constr(Γ, x : X→
x ;M)

in {Xλx.M
.
= X→

x → XM} ∪ EM.

Aleksy Schubert Modest annotations with intersection types

Conclusions

Explicit intersection types and implicit simple types lead to
decidable type-checking, type reconstruction.
What is the exact complexity?

Aleksy Schubert Modest annotations with intersection types

The End

Aleksy Schubert Modest annotations with intersection types

